@@ -52,7 +52,7 @@ def __init__(self, device_type: str = "gpu", **kwargs) -> None:
5252 be divided by the second one.
5353 :param device_type: Type of device on which the classifier is run, either `gpu` or `cpu`.
5454 """
55- import torch
55+ import torch # lgtm [py/repeated-import]
5656
5757 preprocessing = kwargs .get ("preprocessing" )
5858 if isinstance (preprocessing , tuple ):
@@ -150,7 +150,7 @@ def _apply_preprocessing(self, x, y, fit: bool = False, no_grad=True) -> Tuple[A
150150 :return: Tuple of `x` and `y` after applying the defences and standardisation.
151151 :rtype: Format as expected by the `model`
152152 """
153- import torch
153+ import torch # lgtm [py/repeated-import]
154154
155155 from art .preprocessing .standardisation_mean_std .standardisation_mean_std import StandardisationMeanStd
156156 from art .preprocessing .standardisation_mean_std .standardisation_mean_std_pytorch import (
@@ -227,7 +227,7 @@ def _apply_preprocessing_gradient(self, x, gradients, fit=False):
227227 :return: Gradients after backward pass through preprocessing defences.
228228 :rtype: Format as expected by the `model`
229229 """
230- import torch
230+ import torch # lgtm [py/repeated-import]
231231
232232 from art .preprocessing .standardisation_mean_std .standardisation_mean_std import StandardisationMeanStd
233233 from art .preprocessing .standardisation_mean_std .standardisation_mean_std_pytorch import (
@@ -290,9 +290,9 @@ def _set_layer(self, train: bool, layerinfo: List["torch.nn.modules.Module"]) ->
290290 :param train: False for evaluation mode.
291291 :param layerinfo: List of module types.
292292 """
293- from torch import nn
293+ import torch # lgtm [py/repeated-import]
294294
295- assert all ([issubclass (l , nn .modules .Module ) for l in layerinfo ])
295+ assert all ([issubclass (l , torch . nn .modules .Module ) for l in layerinfo ])
296296
297297 def set_train (layer , layerinfo = layerinfo ):
298298 "Set layer into training mode if instance of `layerinfo`."
@@ -315,16 +315,16 @@ def set_dropout(self, train: bool) -> None:
315315
316316 :param train: False for evaluation mode.
317317 """
318- from torch import nn
318+ import torch # lgtm [py/repeated-import]
319319
320- self ._set_layer (train = train , layerinfo = [nn .modules .dropout ._DropoutNd ])
320+ self ._set_layer (train = train , layerinfo = [torch . nn .modules .dropout ._DropoutNd ])
321321
322322 def set_batchnorm (self , train : bool ) -> None :
323323 """
324324 Set all batch normalization layers into train or eval mode.
325325
326326 :param train: False for evaluation mode.
327327 """
328- from torch import nn
328+ import torch # lgtm [py/repeated-import]
329329
330- self ._set_layer (train = train , layerinfo = [nn .modules .batchnorm ._BatchNorm ])
330+ self ._set_layer (train = train , layerinfo = [torch . nn .modules .batchnorm ._BatchNorm ])
0 commit comments