@@ -86,8 +86,8 @@ def transform_feature(x):
86
86
# check accuracy
87
87
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
88
88
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
89
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
90
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
89
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
90
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
91
91
print (model_type , train_acc , test_acc )
92
92
93
93
except ARTTestException as e :
@@ -184,8 +184,8 @@ def transform_feature(x):
184
184
# check accuracy
185
185
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
186
186
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
187
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
188
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
187
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
188
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
189
189
print (model_type , train_acc , test_acc )
190
190
191
191
except ARTTestException as e :
@@ -236,8 +236,8 @@ def transform_feature(x):
236
236
# check accuracy
237
237
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
238
238
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
239
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
240
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
239
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
240
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
241
241
print (model_type , train_acc , test_acc )
242
242
243
243
except ARTTestException as e :
@@ -286,8 +286,8 @@ def transform_feature(x):
286
286
# check accuracy
287
287
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
288
288
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
289
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
290
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
289
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
290
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
291
291
print (model_type , train_acc , test_acc )
292
292
293
293
except ARTTestException as e :
0 commit comments