|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Running database reconstruction attacks on the Iris dataset" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "In this tutorial we will show how to run a database reconstruction attack on the Iris dataset." |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "## Preliminaries" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "The database reconstruction attack takes a trained machine learning model `model`, which has been trained by a training dataset of `n` examples. Then, using `n-1` examples of the training dataset (i.e., with the target row removed), we seek to reconstruct the `n`th example of the dataset by using `model`.\n", |
| 29 | + "\n", |
| 30 | + "In this example, we train a Gaussian Naive Bayes classifier (`model`) with the training dataset, then remove a single row from that dataset, and seek to reconstruct that row using `model`. For typical examples, this attack is successful up to machine precision.\n", |
| 31 | + "\n", |
| 32 | + "We then show that launching the same attack on a ML model trained with differential privacy guarantees provides protection for the traning dataset, and prevents learning the target row with precision." |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "## Example usage" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## Load data" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "markdown", |
| 51 | + "metadata": {}, |
| 52 | + "source": [ |
| 53 | + "First, we load the data of interest and split into train/test subsets. " |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 1, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "from sklearn import datasets\n", |
| 63 | + "from sklearn.model_selection import train_test_split\n", |
| 64 | + "import numpy as np\n", |
| 65 | + "\n", |
| 66 | + "dataset = datasets.load_iris()" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": 2, |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "x_train, x_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.2)" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "markdown", |
| 80 | + "metadata": {}, |
| 81 | + "source": [ |
| 82 | + "## Train model" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "We can now train a Gaussian naive Bayes classifier using the full training dataset. This is the model that will be used to attack the training dataset later." |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 3, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "import sklearn.naive_bayes as naive_bayes\n", |
| 99 | + "from art.estimators.classification.scikitlearn import ScikitlearnGaussianNB\n", |
| 100 | + "\n", |
| 101 | + "model1 = naive_bayes.GaussianNB().fit(x_train, y_train)\n", |
| 102 | + "non_private_art = ScikitlearnGaussianNB(model1)" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 4, |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [ |
| 110 | + { |
| 111 | + "name": "stdout", |
| 112 | + "output_type": "stream", |
| 113 | + "text": [ |
| 114 | + "Model accuracy (on the test dataset): 1.0\n" |
| 115 | + ] |
| 116 | + } |
| 117 | + ], |
| 118 | + "source": [ |
| 119 | + "print(\"Model accuracy (on the test dataset): {}\".format(model1.score(x_test, y_test)))" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "markdown", |
| 124 | + "metadata": {}, |
| 125 | + "source": [ |
| 126 | + "## Launch and evaluate attack" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "We now select a row from the training dataset that we will remove. This is the **target row** which the attack will seek to reconstruct. The attacker will have access to `x_public` and `y_public`." |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 5, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "target_row = int(np.random.random() * x_train.shape[0])\n", |
| 143 | + "\n", |
| 144 | + "x_public = np.delete(x_train, target_row, axis=0)\n", |
| 145 | + "y_public = np.delete(y_train, target_row, axis=0)" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "markdown", |
| 150 | + "metadata": {}, |
| 151 | + "source": [ |
| 152 | + "We can now launch the attack, and seek to infer the value of the target row. This is typically completed in less than a second." |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 6, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "ename": "ImportError", |
| 162 | + "evalue": "cannot import name 'DatabaseReconstruction'", |
| 163 | + "output_type": "error", |
| 164 | + "traceback": [ |
| 165 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 166 | + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", |
| 167 | + "\u001b[0;32m<ipython-input-6-2dd2e9a7664c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mart\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mattacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minference\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDatabaseReconstruction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdbrecon\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDatabaseReconstruction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnon_private_art\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdbrecon\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreconstruct\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_public\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_public\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 168 | + "\u001b[0;31mImportError\u001b[0m: cannot import name 'DatabaseReconstruction'" |
| 169 | + ] |
| 170 | + } |
| 171 | + ], |
| 172 | + "source": [ |
| 173 | + "from art.attacks.inference import DatabaseReconstruction\n", |
| 174 | + "\n", |
| 175 | + "dbrecon = DatabaseReconstruction(non_private_art)\n", |
| 176 | + "\n", |
| 177 | + "x, y = dbrecon.reconstruct(x_public, y_public)" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "markdown", |
| 182 | + "metadata": {}, |
| 183 | + "source": [ |
| 184 | + "We can evaluate the accuracy of the attack using root-mean-square error (RMSE), showing a high level of accuracy in the inferred value." |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": null, |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [], |
| 192 | + "source": [ |
| 193 | + "print(\"Inference RMSE: {}\".format(\n", |
| 194 | + " np.sqrt(((x_train[target_row] - x) ** 2).sum() / x_train.shape[1])))" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "markdown", |
| 199 | + "metadata": {}, |
| 200 | + "source": [ |
| 201 | + "We can confirm that the attack also inferred the correct label `y`." |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "code", |
| 206 | + "execution_count": null, |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [ |
| 210 | + "np.argmax(y) == y_train[target_row]" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "# Attacking a model trained with differential privacy" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "markdown", |
| 222 | + "metadata": {}, |
| 223 | + "source": [ |
| 224 | + "We can mitigate against this attack by training the public ML model with differential privacy. We will use [diffprivlib](https://github.com/IBM/differential-privacy-library) to train a differentially private Guassian naive Bayes classifier. We can mitigate against any loss in accuracy of the model by choosing an `epsilon` value appropriate to our needs." |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "markdown", |
| 229 | + "metadata": {}, |
| 230 | + "source": [ |
| 231 | + "## Train the model" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": null, |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [], |
| 239 | + "source": [ |
| 240 | + "from diffprivlib import models\n", |
| 241 | + "\n", |
| 242 | + "model2 = models.GaussianNB(bounds=([4.3, 2.0, 1.1, 0.1], [7.9, 4.4, 6.9, 2.5]), epsilon=3).fit(x_train, y_train)\n", |
| 243 | + "private_art = ScikitlearnGaussianNB(model2)\n", |
| 244 | + "\n", |
| 245 | + "model2.score(x_test, y_test)" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "markdown", |
| 250 | + "metadata": {}, |
| 251 | + "source": [ |
| 252 | + "## Launch and evaluate attack" |
| 253 | + ] |
| 254 | + }, |
| 255 | + { |
| 256 | + "cell_type": "markdown", |
| 257 | + "metadata": {}, |
| 258 | + "source": [ |
| 259 | + "We then launch the same attack as before. In this case, the attack may take a number of seconds to return a result." |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": null, |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [], |
| 267 | + "source": [ |
| 268 | + "dbrecon = DatabaseReconstruction(private_art)\n", |
| 269 | + "\n", |
| 270 | + "x_dp, y_dp = dbrecon.reconstruct(x_public, y_public)" |
| 271 | + ] |
| 272 | + }, |
| 273 | + { |
| 274 | + "cell_type": "markdown", |
| 275 | + "metadata": {}, |
| 276 | + "source": [ |
| 277 | + "In this case, the RMSE shows our attack has not been as successful" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": null, |
| 283 | + "metadata": {}, |
| 284 | + "outputs": [], |
| 285 | + "source": [ |
| 286 | + "print(\"Inference RMSE (with differential privacy): {}\".format(\n", |
| 287 | + " np.sqrt(((x_train[target_row] - x_dp) ** 2).sum() / x_train.shape[1])))" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "markdown", |
| 292 | + "metadata": {}, |
| 293 | + "source": [ |
| 294 | + "This is confirmed by inspecting the inferred value and the true value." |
| 295 | + ] |
| 296 | + }, |
| 297 | + { |
| 298 | + "cell_type": "code", |
| 299 | + "execution_count": null, |
| 300 | + "metadata": { |
| 301 | + "scrolled": false |
| 302 | + }, |
| 303 | + "outputs": [], |
| 304 | + "source": [ |
| 305 | + "x_dp, x_train[target_row]" |
| 306 | + ] |
| 307 | + }, |
| 308 | + { |
| 309 | + "cell_type": "markdown", |
| 310 | + "metadata": {}, |
| 311 | + "source": [ |
| 312 | + "In fact, the attack may not even be able to correctly infer the target label." |
| 313 | + ] |
| 314 | + }, |
| 315 | + { |
| 316 | + "cell_type": "code", |
| 317 | + "execution_count": null, |
| 318 | + "metadata": {}, |
| 319 | + "outputs": [], |
| 320 | + "source": [ |
| 321 | + "np.argmax(y_dp), y_train[target_row]" |
| 322 | + ] |
| 323 | + } |
| 324 | + ], |
| 325 | + "metadata": { |
| 326 | + "kernelspec": { |
| 327 | + "display_name": "Python 3", |
| 328 | + "language": "python", |
| 329 | + "name": "python3" |
| 330 | + }, |
| 331 | + "language_info": { |
| 332 | + "codemirror_mode": { |
| 333 | + "name": "ipython", |
| 334 | + "version": 3 |
| 335 | + }, |
| 336 | + "file_extension": ".py", |
| 337 | + "mimetype": "text/x-python", |
| 338 | + "name": "python", |
| 339 | + "nbconvert_exporter": "python", |
| 340 | + "pygments_lexer": "ipython3", |
| 341 | + "version": "3.6.8" |
| 342 | + } |
| 343 | + }, |
| 344 | + "nbformat": 4, |
| 345 | + "nbformat_minor": 4 |
| 346 | +} |
0 commit comments