|
23 | 23 | import numpy as np
|
24 | 24 | import tensorflow as tf
|
25 | 25 |
|
26 |
| -from art.utils import projection, random_sphere, uniform_sample_from_sphere_or_ball, to_categorical, least_likely_class, \ |
27 |
| - load_unsw_nb15 |
| 26 | +from art.utils import projection, random_sphere, uniform_sample_from_sphere_or_ball, to_categorical, least_likely_class |
28 | 27 | from art.utils import load_dataset, load_iris, load_mnist, load_nursery, load_cifar10
|
29 | 28 | from art.utils import second_most_likely_class, random_targets, get_label_conf, get_labels_np_array, preprocess
|
30 | 29 | from art.utils import compute_success_array, compute_success, check_and_transform_label_format
|
@@ -470,68 +469,6 @@ def test_nursery(self):
|
470 | 469 | self.assertEqual(x_train.shape[0], y_train.shape[0])
|
471 | 470 | self.assertEqual(x_test.shape[0], y_test.shape[0])
|
472 | 471 |
|
473 |
| - # FIXME: 52 secs to run. Its too long. Mock the web result with a subsample of the data |
474 |
| - def test_load_unsw_nb15_full(self): |
475 |
| - """Test loading the full dataset with frac=1.0 (default).""" |
476 |
| - (x_train, y_train), (x_test, y_test) = load_unsw_nb15() |
477 |
| - |
478 |
| - # size validation |
479 |
| - total_samples = 2_540_047 # FIXME: official sources say there are 2_540_044, but I counted in Excel |
480 |
| - self.assertEqual(x_train.shape[0] + x_test.shape[0], total_samples) |
481 |
| - self.assertEqual(len(y_train) + len(y_test), total_samples) |
482 |
| - self.assertEqual(x_train.shape[0], len(y_train)) |
483 |
| - self.assertEqual(x_test.shape[0], len(x_test)) |
484 |
| - |
485 |
| - |
486 |
| - def test_load_unsw_nb15_frac(self): |
487 |
| - """Test loading the full dataset with frac=0.1""" |
488 |
| - (x_train, y_train), (x_test, y_test) = load_unsw_nb15(frac=0.1) |
489 |
| - |
490 |
| - # size validation |
491 |
| - total_samples = 254_005 |
492 |
| - self.assertEqual(x_train.shape[0] + x_test.shape[0], total_samples) |
493 |
| - self.assertEqual(len(y_train) + len(y_test), total_samples) |
494 |
| - self.assertEqual(x_train.shape[0], len(y_train)) |
495 |
| - self.assertEqual(x_test.shape[0], len(x_test)) |
496 |
| - |
497 |
| - |
498 |
| - # y has column 'attack_cat' |
499 |
| - self.assertIn("label", y_train.columns, |
500 |
| - "Column 'label' is missing from y_train") |
501 |
| - self.assertIn("label", y_test.columns, |
502 |
| - "Column 'label' is missing from y_test") |
503 |
| - |
504 |
| - # x doesn't have the column 'attack_cat' |
505 |
| - self.assertNotIn("label", x_train.columns, |
506 |
| - "Column 'label' should not be in x_train") |
507 |
| - self.assertNotIn("label", x_test.columns, |
508 |
| - "Column 'label' should not be in y_train") |
509 |
| - |
510 |
| - # feature count is correct (total 49) |
511 |
| - self.assertEqual(49 - 2, len(x_train.columns), |
512 |
| - "x_train doesn't have the 47 corresponding features") |
513 |
| - self.assertEqual(49 - 2, len(x_test.columns), |
514 |
| - "x_test doesn't have the 47 corresponding features") |
515 |
| - self.assertEqual(49 - 48, len(y_train.columns), |
516 |
| - "y_train doesn't have the single corresponding features") |
517 |
| - self.assertEqual(49 - 48, len(y_test.columns), |
518 |
| - "y_test doesn't have the single corresponding features") |
519 |
| - |
520 |
| - # test column types |
521 |
| - actual_dtypes = x_train.dtypes.astype(str).value_counts().to_dict() |
522 |
| - |
523 |
| - expected_dtypes = { |
524 |
| - 'float64': 10, |
525 |
| - 'int64': 30, # -1 porque es el label |
526 |
| - 'object': 7, # -1 porque ID es removido |
527 |
| - } |
528 |
| - |
529 |
| - for dtype, count in expected_dtypes.items(): |
530 |
| - self.assertEqual(count, |
531 |
| - actual_dtypes.get(dtype, 0), |
532 |
| - f"Expected {count} columns of type {dtype}, but found {actual_dtypes.get(dtype, 0)}") |
533 |
| - |
534 |
| - |
535 | 472 | def test_segment_by_class(self):
|
536 | 473 | data = np.array([[3, 2], [9, 2], [4, 0], [9, 0]])
|
537 | 474 | classes = to_categorical(np.array([2, 1, 0, 1]))
|
|
0 commit comments