@@ -332,9 +332,11 @@ def loss_gradient( # pylint: disable=W0221
332332 :param y: Targets of format `List[Dict[str, np.ndarray]]`, one for each input image. The fields of the Dict are
333333 as follows:
334334
335- - boxes [N, 4]: the boxes in [y1, x1, y2, x2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
336- Can be changed to PyTorch format with `standardise_output=True`.
337- - labels [N]: the labels for each image
335+ - boxes [N, 4]: the boxes in [y1, x1, y2, x2] in scale [0, 1] (`standardise_output=False`) or
336+ [x1, y1, x2, y2] in image scale (`standardise_output=True`) format,
337+ with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
338+ - labels [N]: the labels for each image in TensorFlow (`standardise_output=False`) or PyTorch
339+ (`standardise_output=True`) format
338340 - scores [N]: the scores or each prediction.
339341
340342 :param standardise_output: True if `y` is provided in standardised PyTorch format. Box coordinates will be
@@ -401,14 +403,14 @@ def predict( # pylint: disable=W0221
401403 scaled from [0, 1] to image dimensions, label index will be increased by 1 to adhere
402404 to COCO categories and the boxes will be changed to [x1, y1, x2, y2] format, with
403405 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
404- :return: A dictionary containing the following fields:
405406
406407 :return: Predictions of format `List[Dict[str, np.ndarray]]`, one for each input image. The
407408 fields of the Dict are as follows:
408409
409410 - boxes [N, 4]: the boxes in [y1, x1, y2, x2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
410411 Can be changed to PyTorch format with `standardise_output=True`.
411- - labels [N]: the labels for each image
412+ - labels [N]: the labels for each image in TensorFlow format. Can be changed to PyTorch format with
413+ `standardise_output=True`.
412414 - scores [N]: the scores or each prediction.
413415 """
414416 # Only do prediction if is_training is False
0 commit comments