Skip to content

Commit 709adc3

Browse files
committed
Update workflows for TensorFlow/Keras 2.14
Signed-off-by: Beat Buesser <[email protected]>
1 parent f45b268 commit 709adc3

File tree

1 file changed

+7
-15
lines changed

1 file changed

+7
-15
lines changed

tests/estimators/classification/test_scikitlearn.py

Lines changed: 7 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -300,38 +300,32 @@ def test_class_gradient_none_2(self):
300300

301301
def test_class_gradient_int_1(self):
302302
grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=1)
303-
grad_expected = [[[-0.56322294, -0.70493763, -0.98874801, -0.67053026]]]
303+
grad_expected = [[[-0.56317311, -0.70493763, -0.98908609, -0.67106276]]]
304304

305305
for i_shape in range(4):
306-
print(grad_predicted[0, 0, i_shape])
307306
self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3)
308307

309308
def test_class_gradient_int_2(self):
310309
grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:2], label=1)
311310
grad_expected = [
312-
[[-0.56322294, -0.70427608, -0.98874801, -0.67053026]],
313-
[[-0.50528532, -0.71700042, -0.82467848, -0.59614766]],
311+
[[-0.56317306, -0.70493776, -0.98908573, -0.67106259]],
312+
[[-0.50522697, -0.71762568, -0.82497531, -0.5966416]],
314313
]
315-
print("grad_predicted")
316-
print(grad_predicted)
317314
np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4)
318315

319316
def test_class_gradient_list_1(self):
320317
grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=[1])
321-
grad_expected = [[[-0.56322294, -0.70427608, -0.98874801, -0.67053026]]]
318+
grad_expected = [[[-0.56317311, -0.70493763, -0.98874801, -0.67053026]]]
322319

323320
for i_shape in range(4):
324-
print(grad_predicted[0, 0, i_shape])
325321
self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3)
326322

327323
def test_class_gradient_list_2(self):
328324
grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:2], label=[1, 2])
329325
grad_expected = [
330-
[[-0.56322294, -0.70427608, -0.98874801, -0.67053026]],
331-
[[0.70875132, 0.25104877, 1.70929277, 0.88410652]],
326+
[[-0.56317306, -0.70493776, -0.98908573, -0.67106259]],
327+
[[0.70866591, 0.25158876, 1.70947325, 0.88450021]],
332328
]
333-
print("grad_predicted")
334-
print(grad_predicted)
335329
np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4)
336330

337331
def test_class_gradient_label_wrong_type(self):
@@ -345,9 +339,7 @@ def test_class_gradient_label_wrong_type(self):
345339

346340
def test_loss_gradient(self):
347341
grad_predicted = self.classifier.loss_gradient(self.x_test_iris[0:1], self.y_test_iris[0:1])
348-
grad_expected = np.asarray([[-0.21693791, -0.08792436, -0.51507443, -0.26990796]])
349-
print("grad_predicted")
350-
print(grad_predicted)
342+
grad_expected = np.asarray([[-0.21690657, -0.08809226, -0.51512082, -0.27002635]])
351343
np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4)
352344

353345
def test_save(self):

0 commit comments

Comments
 (0)