@@ -187,8 +187,8 @@ def transform_feature(x):
187187 inferred_train = attack .infer (x_train_for_attack , y_train_iris , values = values )
188188 inferred_test = attack .infer (x_test_for_attack , y_test_iris , values = values )
189189 # check accuracy
190- train_acc = np .sum (inferred_train == x_train_feature . reshape ( 1 , - 1 ) ) / len (inferred_train )
191- test_acc = np .sum (inferred_test == x_test_feature . reshape ( 1 , - 1 ) ) / len (inferred_test )
190+ train_acc = np .sum (inferred_train == x_train_feature ) / len (inferred_train )
191+ test_acc = np .sum (inferred_test == x_test_feature ) / len (inferred_test )
192192 assert 0.1 <= train_acc
193193 assert 0.1 <= test_acc
194194
@@ -325,18 +325,18 @@ def transform_feature(x):
325325 attack_train_ratio = 0.5
326326 attack_train_size = int (len (x_train ) * attack_train_ratio )
327327 attack_test_size = int (len (x_test ) * attack_train_ratio )
328- # attack without callibration
328+ # attack without calibration
329329 attack = AttributeInferenceMembership (classifier , meminf_attack , attack_feature = attack_feature )
330330 # infer attacked feature
331331 inferred_train = attack .infer (x_train_for_attack , y_train_iris , values = values )
332332 inferred_test = attack .infer (x_test_for_attack , y_test_iris , values = values )
333333 # check accuracy
334- train_acc = np .sum (inferred_train == x_train_feature . reshape ( 1 , - 1 ) ) / len (inferred_train )
335- test_acc = np .sum (inferred_test == x_test_feature . reshape ( 1 , - 1 ) ) / len (inferred_test )
334+ train_acc = np .sum (inferred_train == x_train_feature ) / len (inferred_train )
335+ test_acc = np .sum (inferred_test == x_test_feature ) / len (inferred_test )
336336 assert 0.5 <= train_acc
337337 assert 0.5 <= test_acc
338338
339- # attack with callibration
339+ # attack with calibration
340340 meminf_attack .calibrate_distance_threshold (
341341 x_train [:attack_train_size ],
342342 y_train_iris [:attack_train_size ],
@@ -349,8 +349,8 @@ def transform_feature(x):
349349 inferred_train = attack .infer (x_train_for_attack , y_train_iris , values = values )
350350 inferred_test = attack .infer (x_test_for_attack , y_test_iris , values = values )
351351 # check accuracy
352- train_acc = np .sum (inferred_train == x_train_feature . reshape ( 1 , - 1 ) ) / len (inferred_train )
353- test_acc = np .sum (inferred_test == x_test_feature . reshape ( 1 , - 1 ) ) / len (inferred_test )
352+ train_acc = np .sum (inferred_train == x_train_feature ) / len (inferred_train )
353+ test_acc = np .sum (inferred_test == x_test_feature ) / len (inferred_test )
354354 assert 0.1 <= train_acc
355355 assert 0.1 <= test_acc
356356
0 commit comments