@@ -210,8 +210,8 @@ def generate(self, x, **kwargs):
210210 y = get_labels_np_array (self .classifier .predict (x , logits = False ))
211211
212212 for j , (ex , target ) in enumerate (zip (x_adv , y )):
213- logger .debug ('Processing sample %i out of %i' % ( j , x_adv .shape [0 ]) )
214- image = ex .copy (). astype ( NUMPY_DTYPE )
213+ logger .debug ('Processing sample %i out of %i' , j , x_adv .shape [0 ])
214+ image = ex .copy ()
215215
216216 # The optimization is performed in tanh space to keep the
217217 # adversarial images bounded from clip_min and clip_max.
@@ -228,7 +228,7 @@ def generate(self, x, **kwargs):
228228
229229 for bss in range (self .binary_search_steps ):
230230 lr = self .learning_rate
231- logger .debug ('Binary search step %i out of %i (c==%f)' % ( bss , self .binary_search_steps , c ) )
231+ logger .debug ('Binary search step %i out of %i (c==%f)' , bss , self .binary_search_steps , c )
232232
233233 # Initialize perturbation in tanh space:
234234 adv_image = image
@@ -238,15 +238,15 @@ def generate(self, x, **kwargs):
238238 overall_attack_success = attack_success
239239
240240 for it in range (self .max_iter ):
241- logger .debug ('Iteration step %i out of %i' % ( it , self .max_iter ) )
241+ logger .debug ('Iteration step %i out of %i' , it , self .max_iter )
242242 logger .debug ('Total Loss: %f' , loss )
243243 logger .debug ('L2Dist: %f' , l2dist )
244244 logger .debug ('Margin Loss: %f' , loss - l2dist )
245245
246246 if attack_success :
247247 logger .debug ('Margin Loss <= 0 --> Attack Success!' )
248248 if l2dist < best_l2dist :
249- logger .debug ('New best L2Dist: %f (previous=%f)' % ( l2dist , best_l2dist ) )
249+ logger .debug ('New best L2Dist: %f (previous=%f)' , l2dist , best_l2dist )
250250 best_l2dist = l2dist
251251 best_adv_image = adv_image
252252
@@ -263,7 +263,7 @@ def generate(self, x, **kwargs):
263263
264264 halving = 0
265265 while loss >= prev_loss and halving < self .max_halving :
266- logger .debug ('Apply gradient with learning rate %f (halving=%i)' % ( lr , halving ) )
266+ logger .debug ('Apply gradient with learning rate %f (halving=%i)' , lr , halving )
267267 new_adv_image_tanh = adv_image_tanh + lr * perturbation_tanh
268268 new_adv_image = self ._tanh_to_original (new_adv_image_tanh , clip_min , clip_max )
269269 _ , l2dist , loss = self ._loss (image , new_adv_image , target , c )
@@ -284,7 +284,7 @@ def generate(self, x, **kwargs):
284284 while loss <= prev_loss and doubling < self .max_doubling :
285285 prev_loss = loss
286286 lr *= 2
287- logger .debug ('Apply gradient with learning rate %f (doubling=%i)' % ( lr , doubling ) )
287+ logger .debug ('Apply gradient with learning rate %f (doubling=%i)' , lr , doubling )
288288 doubling += 1
289289 new_adv_image_tanh = adv_image_tanh + lr * perturbation_tanh
290290 new_adv_image = self ._tanh_to_original (new_adv_image_tanh , clip_min , clip_max )
@@ -311,7 +311,7 @@ def generate(self, x, **kwargs):
311311 if attack_success :
312312 logger .debug ('Margin Loss <= 0 --> Attack Success!' )
313313 if l2dist < best_l2dist :
314- logger .debug ('New best L2Dist: %f (previous=%f)' % ( l2dist , best_l2dist ) )
314+ logger .debug ('New best L2Dist: %f (previous=%f)' , l2dist , best_l2dist )
315315 best_l2dist = l2dist
316316 best_adv_image = adv_image
317317
0 commit comments