@@ -136,7 +136,7 @@ def test_general_iris_lr(iris_dataset):
136136 (x_train , y_train , x_valid , y_valid ), _ , clip_values = iris_dataset
137137
138138 # Setup classifier.
139- lr_clf = LogisticRegression (penalty = "none" )
139+ lr_clf = LogisticRegression (penalty = None )
140140 lr_clf .fit (x_train , y_train )
141141 clf_slr = ScikitlearnLogisticRegression (model = lr_clf , clip_values = clip_values )
142142
@@ -178,7 +178,7 @@ def test_general_wines_lr(wine_dataset):
178178 (x_train , y_train , x_valid , y_valid ), _ , clip_values = wine_dataset
179179
180180 # Setup classifier
181- lr_clf = LogisticRegression (penalty = "none" )
181+ lr_clf = LogisticRegression (penalty = None )
182182 lr_clf .fit (x_train , y_train )
183183 clf_slr = ScikitlearnLogisticRegression (model = lr_clf , clip_values = clip_values )
184184
@@ -212,7 +212,7 @@ def test_general_cancer_lr(breast_cancer_dataset):
212212 (x_train , y_train , x_valid , y_valid ), _ , clip_values = breast_cancer_dataset
213213
214214 # Setup classifier
215- lr_clf = LogisticRegression (penalty = "none" )
215+ lr_clf = LogisticRegression (penalty = None )
216216 lr_clf .fit (x_train , y_train )
217217 clf_slr = ScikitlearnLogisticRegression (model = lr_clf , clip_values = clip_values )
218218
@@ -329,7 +329,7 @@ def pearson_correlations(x, y):
329329 return result
330330
331331 # Setup classifier
332- lr_clf = LogisticRegression (penalty = "none" )
332+ lr_clf = LogisticRegression (penalty = None )
333333 lr_clf .fit (x_train , y_train )
334334 clf_slr = ScikitlearnLogisticRegression (model = lr_clf , clip_values = clip_values )
335335
@@ -392,7 +392,7 @@ def test_clipping(iris_dataset):
392392 (x_train , y_train , x_valid , y_valid ), _ , clip_values = iris_dataset
393393
394394 # Setup classifier
395- lr_clf = LogisticRegression (penalty = "none" )
395+ lr_clf = LogisticRegression (penalty = None )
396396 lr_clf .fit (x_train , y_train )
397397
398398 # Dataset min-max clipping values
0 commit comments