@@ -153,7 +153,7 @@ def __init__(
153153
154154 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and
155155 0 <= y1 < y2 <= H.
156- - labels [N]: the labels for each image
156+ - labels [N]: the labels for each image.
157157 - scores [N]: the scores of each prediction.
158158 :param input_shape: The shape of one input sample.
159159 :param optimizer: The optimizer for training the classifier.
@@ -275,8 +275,7 @@ def _preprocess_and_convert_inputs(
275275 The fields of the Dict are as follows:
276276
277277 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
278- - labels [N]: the labels for each image
279- - scores [N]: the scores of each prediction.
278+ - labels [N]: the labels for each image.
280279 :param fit: `True` if the function is call before fit/training and `False` if the function is called before a
281280 predict operation.
282281 :param no_grad: `True` if no gradients required.
@@ -365,8 +364,7 @@ def _get_losses(
365364 The fields of the Dict are as follows:
366365
367366 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
368- - labels [N]: the labels for each image
369- - scores [N]: the scores of each prediction.
367+ - labels [N]: the labels for each image.
370368 :return: Loss gradients of the same shape as `x`.
371369 """
372370 self ._model .train ()
@@ -401,8 +399,7 @@ def loss_gradient( # pylint: disable=W0613
401399 The fields of the Dict are as follows:
402400
403401 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
404- - labels [N]: the labels for each image
405- - scores [N]: the scores of each prediction.
402+ - labels [N]: the labels for each image.
406403 :return: Loss gradients of the same shape as `x`.
407404 """
408405 import torch
@@ -457,7 +454,7 @@ def predict(self, x: np.ndarray, batch_size: int = 128, **kwargs) -> List[Dict[s
457454 are as follows:
458455
459456 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
460- - labels [N]: the labels for each image
457+ - labels [N]: the labels for each image.
461458 - scores [N]: the scores of each prediction.
462459 """
463460 import torch
@@ -521,8 +518,7 @@ def fit( # pylint: disable=W0221
521518 The fields of the Dict are as follows:
522519
523520 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
524- - labels [N]: the labels for each image
525- - scores [N]: the scores of each prediction.
521+ - labels [N]: the labels for each image.
526522 :param batch_size: Size of batches.
527523 :param nb_epochs: Number of epochs to use for training.
528524 :param drop_last: Set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by
@@ -604,8 +600,7 @@ def compute_losses(
604600 The fields of the Dict are as follows:
605601
606602 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
607- - labels [N]: the labels for each image
608- - scores [N]: the scores of each prediction.
603+ - labels [N]: the labels for each image.
609604 :return: Dictionary of loss components.
610605 """
611606 loss_components , _ = self ._get_losses (x = x , y = y )
@@ -625,8 +620,7 @@ def compute_loss( # type: ignore
625620 The fields of the Dict are as follows:
626621
627622 - boxes [N, 4]: the boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H.
628- - labels [N]: the labels for each image
629- - scores [N]: the scores of each prediction.
623+ - labels [N]: the labels for each image.
630624 :return: Loss.
631625 """
632626 import torch
0 commit comments