@@ -81,8 +81,8 @@ def test_failure_attack(self):
8181 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
8282 params = {'y' : random_targets (y_test , tfc .nb_classes )}
8383 x_test_adv = cl2m .generate (x_test , ** params )
84- self .assertTrue ((x_test_adv <= 1 ).all ())
85- self .assertTrue ((x_test_adv >= 0 ).all ())
84+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
85+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
8686 np .testing .assert_almost_equal (x_test , x_test_adv , 3 )
8787
8888 def test_tfclassifier (self ):
@@ -129,8 +129,9 @@ def test_tfclassifier(self):
129129 params = {'y' : random_targets (y_test , tfc .nb_classes )}
130130 x_test_adv = cl2m .generate (x_test , ** params )
131131 self .assertFalse ((x_test == x_test_adv ).all ())
132- self .assertTrue ((x_test_adv <= 1 ).all ())
133- self .assertTrue ((x_test_adv >= 0 ).all ())
132+ #print(x_test_adv)
133+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
134+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
134135 target = np .argmax (params ['y' ], axis = 1 )
135136 y_pred_adv = np .argmax (tfc .predict (x_test_adv ), axis = 1 )
136137 self .assertTrue ((target == y_pred_adv ).all ())
@@ -141,8 +142,8 @@ def test_tfclassifier(self):
141142 params = {'y' : random_targets (y_test , tfc .nb_classes )}
142143 x_test_adv = cl2m .generate (x_test , ** params )
143144 self .assertFalse ((x_test == x_test_adv ).all ())
144- self .assertTrue ((x_test_adv <= 1 ).all ())
145- self .assertTrue ((x_test_adv >= 0 ).all ())
145+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
146+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
146147 target = np .argmax (params ['y' ], axis = 1 )
147148 y_pred_adv = np .argmax (tfc .predict (x_test_adv ), axis = 1 )
148149 self .assertTrue ((target != y_pred_adv ).all ())
@@ -153,8 +154,8 @@ def test_tfclassifier(self):
153154 params = {}
154155 x_test_adv = cl2m .generate (x_test , ** params )
155156 self .assertFalse ((x_test == x_test_adv ).all ())
156- self .assertTrue ((x_test_adv <= 1 ).all ())
157- self .assertTrue ((x_test_adv >= 0 ).all ())
157+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
158+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
158159 y_pred = np .argmax (tfc .predict (x_test ), axis = 1 )
159160 y_pred_adv = np .argmax (tfc .predict (x_test_adv ), axis = 1 )
160161 self .assertTrue ((y_pred != y_pred_adv ).all ())
@@ -194,8 +195,8 @@ def test_krclassifier(self):
194195 params = {'y' : random_targets (y_test , krc .nb_classes )}
195196 x_test_adv = cl2m .generate (x_test , ** params )
196197 self .assertFalse ((x_test == x_test_adv ).all ())
197- self .assertTrue ((x_test_adv <= 1 ).all ())
198- self .assertTrue ((x_test_adv >= 0 ).all ())
198+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
199+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
199200 target = np .argmax (params ['y' ], axis = 1 )
200201 y_pred_adv = np .argmax (krc .predict (x_test_adv ), axis = 1 )
201202 self .assertTrue ((target == y_pred_adv ).any ())
@@ -206,8 +207,8 @@ def test_krclassifier(self):
206207 params = {'y' : random_targets (y_test , krc .nb_classes )}
207208 x_test_adv = cl2m .generate (x_test , ** params )
208209 self .assertFalse ((x_test == x_test_adv ).all ())
209- self .assertTrue ((x_test_adv <= 1 ).all ())
210- self .assertTrue ((x_test_adv >= 0 ).all ())
210+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
211+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
211212 target = np .argmax (params ['y' ], axis = 1 )
212213 y_pred_adv = np .argmax (krc .predict (x_test_adv ), axis = 1 )
213214 self .assertTrue ((target != y_pred_adv ).all ())
@@ -218,8 +219,8 @@ def test_krclassifier(self):
218219 params = {}
219220 x_test_adv = cl2m .generate (x_test , ** params )
220221 self .assertFalse ((x_test == x_test_adv ).all ())
221- self .assertTrue ((x_test_adv <= 1 ).all ())
222- self .assertTrue ((x_test_adv >= 0 ).all ())
222+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
223+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
223224 y_pred = np .argmax (krc .predict (x_test ), axis = 1 )
224225 y_pred_adv = np .argmax (krc .predict (x_test_adv ), axis = 1 )
225226 self .assertTrue ((y_pred != y_pred_adv ).any ())
@@ -255,8 +256,8 @@ def test_ptclassifier(self):
255256 params = {'y' : random_targets (y_test , ptc .nb_classes )}
256257 x_test_adv = cl2m .generate (x_test , ** params )
257258 self .assertFalse ((x_test == x_test_adv ).all ())
258- self .assertTrue ((x_test_adv <= 1 ).all ())
259- self .assertTrue ((x_test_adv >= 0 ).all ())
259+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
260+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
260261 target = np .argmax (params ['y' ], axis = 1 )
261262 y_pred_adv = np .argmax (ptc .predict (x_test_adv ), axis = 1 )
262263 self .assertTrue ((target == y_pred_adv ).any ())
@@ -267,8 +268,8 @@ def test_ptclassifier(self):
267268 params = {'y' : random_targets (y_test , ptc .nb_classes )}
268269 x_test_adv = cl2m .generate (x_test , ** params )
269270 self .assertFalse ((x_test == x_test_adv ).all ())
270- self .assertTrue ((x_test_adv <= 1 ).all ())
271- self .assertTrue ((x_test_adv >= 0 ).all ())
271+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
272+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
272273 target = np .argmax (params ['y' ], axis = 1 )
273274 y_pred_adv = np .argmax (ptc .predict (x_test_adv ), axis = 1 )
274275 self .assertTrue ((target != y_pred_adv ).all ())
@@ -279,8 +280,8 @@ def test_ptclassifier(self):
279280 params = {}
280281 x_test_adv = cl2m .generate (x_test , ** params )
281282 self .assertFalse ((x_test == x_test_adv ).all ())
282- self .assertTrue ((x_test_adv <= 1 ).all ())
283- self .assertTrue ((x_test_adv >= 0 ).all ())
283+ self .assertTrue ((x_test_adv <= 1.0001 ).all ())
284+ self .assertTrue ((x_test_adv >= - 0.0001 ).all ())
284285 y_pred = np .argmax (ptc .predict (x_test ), axis = 1 )
285286 y_pred_adv = np .argmax (ptc .predict (x_test_adv ), axis = 1 )
286287 self .assertTrue ((y_pred != y_pred_adv ).any ())
0 commit comments