@@ -19,9 +19,9 @@ class DummyModel(torch.nn.Module):
19
19
def forward (self , x ):
20
20
return x
21
21
22
- dummy_model = DummyModel ()
22
+ test_model = DummyModel ()
23
23
yolo = PyTorchYolo (
24
- model = dummy_model ,
24
+ model = test_model ,
25
25
input_shape = (3 , 416 , 416 ),
26
26
optimizer = None ,
27
27
clip_values = (0 , 1 ),
@@ -68,7 +68,7 @@ def loss(self, items):
68
68
# Return (loss, [loss_box, loss_cls, loss_dfl])
69
69
return (torch .tensor ([1.0 , 2.0 , 3.0 ]), [torch .tensor (1.0 ), torch .tensor (2.0 ), torch .tensor (3.0 )])
70
70
71
- dummy_model = DummyModel ()
71
+ test_model = DummyModel ()
72
72
# Patch ultralytics import in the wrapper
73
73
import sys
74
74
import types
@@ -90,7 +90,7 @@ def loss(self, items):
90
90
sys .modules ["ultralytics.utils" ] = ultralytics_mock .utils
91
91
sys .modules ["ultralytics.utils.loss" ] = ultralytics_mock .utils .loss
92
92
93
- wrapper = PyTorchYoloLossWrapper (dummy_model , name = "yolov8n" )
93
+ wrapper = PyTorchYoloLossWrapper (test_model , name = "yolov8n" )
94
94
wrapper .train ()
95
95
# Dummy input and targets
96
96
x = torch .zeros ((1 , 3 , 416 , 416 ))
@@ -114,7 +114,7 @@ def loss(self, items):
114
114
# Return (loss, [loss_box, loss_cls, loss_dfl])
115
115
return (torch .tensor ([1.0 , 2.0 , 3.0 ]), [torch .tensor (1.0 ), torch .tensor (2.0 ), torch .tensor (3.0 )])
116
116
117
- dummy_model = DummyModel ()
117
+ test_model = DummyModel ()
118
118
# Patch ultralytics import in the wrapper
119
119
import sys
120
120
import types
@@ -136,7 +136,7 @@ def loss(self, items):
136
136
sys .modules ["ultralytics.utils" ] = ultralytics_mock .utils
137
137
sys .modules ["ultralytics.utils.loss" ] = ultralytics_mock .utils .loss
138
138
139
- wrapper = PyTorchYoloLossWrapper (dummy_model , name = "yolov8n" )
139
+ wrapper = PyTorchYoloLossWrapper (test_model , name = "yolov8n" )
140
140
wrapper .train ()
141
141
x = torch .zeros ((1 , 3 , 416 , 416 ))
142
142
targets = [{"boxes" : torch .zeros ((1 , 4 )), "labels" : torch .zeros ((1 ,))}]
0 commit comments