@@ -90,7 +90,7 @@ def __init__(
9090 else :
9191 self .default_model = True
9292 if self .attack_model_type == "nn" :
93- import torch # lgtm [py/repeated-import]
93+ import torch # lgtm [py/repeated-import] lgtm [py/import-and-import-from]
9494 from torch import nn # lgtm [py/repeated-import]
9595
9696 class MembershipInferenceAttackModel (nn .Module ):
@@ -212,7 +212,7 @@ def fit( # pylint: disable=W0613
212212 x_2 = x_2 .astype (np .float32 ).reshape (- 1 , 1 )
213213
214214 if self .default_model and self .attack_model_type == "nn" :
215- import torch # lgtm [py/repeated-import]
215+ import torch # lgtm [py/repeated-import] lgtm [py/import-and-import-from]
216216 from torch import nn # lgtm [py/repeated-import]
217217 from torch import optim # lgtm [py/repeated-import]
218218 from torch .utils .data import DataLoader # lgtm [py/repeated-import]
@@ -281,7 +281,7 @@ def infer(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.n
281281 y = y .astype (np .float32 ).reshape (- 1 , 1 )
282282
283283 if self .default_model and self .attack_model_type == "nn" :
284- import torch # lgtm [py/repeated-import]
284+ import torch # lgtm [py/repeated-import] lgtm [py/import-and-import-from]
285285 from torch .utils .data import DataLoader # lgtm [py/repeated-import]
286286 from art .utils import to_cuda , from_cuda
287287
@@ -338,7 +338,7 @@ class AttackDataset(Dataset):
338338 """
339339
340340 def __init__ (self , x_1 , x_2 , y = None ):
341- import torch # lgtm [py/repeated-import]
341+ import torch # lgtm [py/repeated-import] lgtm [py/import-and-import-from]
342342
343343 self .x_1 = torch .from_numpy (x_1 .astype (np .float64 )).type (torch .FloatTensor )
344344 self .x_2 = torch .from_numpy (x_2 .astype (np .int32 )).type (torch .FloatTensor )
0 commit comments