Skip to content

Commit d83814d

Browse files
Irina NicolaeIrina Nicolae
authored andcommitted
Update doc to remove Classifier error
1 parent 034cd97 commit d83814d

File tree

6 files changed

+24
-21
lines changed

6 files changed

+24
-21
lines changed

docs/guide/usage.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
Running scripts
22
===============
33
The library contains three main scripts for:
4+
45
* training a classifier using (`train.py`)
56
* crafting adversarial examples on a trained model through (`generate_adversarial.py`)
67
* testing model accuracy on different test sets using (`test_accuracies.py`)
@@ -18,6 +19,7 @@ Some examples of how to use the toolbox when writing your own code can be found
1819
See `examples/README.md` for more information about what each example does. To run an example, use the following command:
1920

2021
.. code-block:: bash
22+
2123
python3 examples/<example_name>.py
2224
2325
.. _GitHub: https:github.com/IBM/adversarial-robustness-toolbox

docs/index.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ The Adversarial Robustness Toolbox contains implementations of the following att
2323
* Jacobian Saliency Map (`Papernot et al., 2016`_)
2424
* Universal Perturbation (`Moosavi-Dezfooli et al., 2016`_)
2525
* Virtual Adversarial Method (`Moosavi-Dezfooli et al., 2015b`_)
26-
* C&amp;W Attack (`Carlini and Wagner, 2016`_)
26+
* C&W Attack (`Carlini and Wagner, 2016`_)
2727
* NewtonFool (`Jang et al., 2017`_)
2828

2929
The following defense methods are also supported:

docs/modules/classifiers.rst

Lines changed: 0 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,3 @@
11
:mod:`src.classifiers`
22
======================
33
.. automodule:: src.classifiers
4-
5-
Supported models
6-
----------------
7-
.. autoclass:: Classifier
8-
:members:
9-
.. autoclass:: CNN
10-
:members:
11-
.. autoclass:: MLP
12-
:members:
13-
.. autoclass:: ResNet
14-
:members:

docs/modules/metrics.rst

Lines changed: 11 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,19 @@
22
==================
33
.. automodule:: src.metrics
44

5-
Model robustness metrics
6-
------------------------
5+
Loss Sensitivity
6+
----------------
77
.. autofunction:: loss_sensitivity
8+
9+
Empirical Robustness
10+
--------------------
811
.. autofunction:: empirical_robustness
12+
13+
Distance to nearest neighbors
14+
-----------------------------
915
.. autofunction:: nearest_neighbour_dist
16+
17+
CLEVER
18+
------
1019
.. autofunction:: clever_u
1120
.. autofunction:: clever_t

docs/modules/utils.rst

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,15 @@
11
:mod:`src.utils`
22
================
33
.. automodule:: src.utils
4-
Functions
5-
---------
4+
5+
Load Dataset
6+
------------
7+
.. autofunction:: load_dataset
8+
9+
Random Targets
10+
--------------
611
.. autofunction:: random_targets
12+
13+
Preprocess
14+
----------
715
.. autofunction:: preprocess
8-
.. autofunction:: load_dataset

src/classifiers/__init__.py

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,3 @@
22
Classifier API for applying all attacks. Use the :class:`Classifier` wrapper to be able to apply an attack to a
33
preexisting model.
44
"""
5-
from src.classifiers.classifier import Classifier
6-
from src.classifiers.cnn import CNN
7-
from src.classifiers.mlp import MLP
8-
from src.classifiers.resnet import ResNet

0 commit comments

Comments
 (0)