@@ -155,7 +155,7 @@ def apply_transformation(
155155 table = np .empty ((256 ), np .uint8 )
156156 for i in range (256 ):
157157 table [i ] = np .clip (pow (i / 255.0 , gamma ) * 255.0 , 0 , 255 )
158- att_uint = cv2 .LUT (att_uint , table )
158+ att_uint = cv2 .LUT (att_uint , table ) # type: ignore
159159 att = (att_uint / 255.0 ).astype (np .float32 )
160160 att = np .clip (att , 0.0 , 1.0 )
161161
@@ -227,12 +227,12 @@ def add_noise(
227227 """
228228 import cv2
229229
230- theta_full = cv2 .resize (theta , (x .shape [1 ], x .shape [0 ]))
230+ theta_full = cv2 .resize (theta , (x .shape [1 ], x .shape [0 ])). astype ( float )
231231 if len (theta_full .shape ) < 3 :
232232 theta_full = theta_full [:, :, np .newaxis ]
233233 comb = x + lbd * theta_full
234234
235- mask_full = cv2 .resize (mask , (x .shape [1 ], x .shape [0 ]))
235+ mask_full = cv2 .resize (mask , (x .shape [1 ], x .shape [0 ])). astype ( float )
236236 if len (mask_full .shape ) < 3 :
237237 mask_full = mask_full [:, :, np .newaxis ]
238238 mask_full = np .where (mask_full > 0.5 , 1.0 , 0.0 )
@@ -334,7 +334,7 @@ def transform_wb(
334334 if blur != 0 :
335335 kernel = np .zeros ((blur * 2 - 1 , blur * 2 - 1 ))
336336 kernel [blur - 1 , blur - 1 ] = 1
337- kernel = cv2 .GaussianBlur (kernel , (blur , blur ), 0 )
337+ kernel = cv2 .GaussianBlur (kernel , (blur , blur ), 0 ). astype ( float )
338338 kernel = kernel [blur // 2 : blur // 2 + blur , blur // 2 : blur // 2 + blur ]
339339 kernel = kernel [np .newaxis , :, :]
340340 kernel = np .repeat (kernel [np .newaxis , :, :, :], x_adv .size ()[1 ], axis = 0 )
0 commit comments