@@ -86,8 +86,8 @@ def transform_feature(x):
86
86
# check accuracy
87
87
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
88
88
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
89
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
90
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
89
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
90
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
91
91
print (model_type , train_acc , test_acc )
92
92
93
93
except ARTTestException as e :
@@ -285,8 +285,8 @@ def transform_feature(x):
285
285
# check accuracy
286
286
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
287
287
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
288
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
289
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
288
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
289
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
290
290
print (model_type , train_acc , test_acc )
291
291
292
292
except ARTTestException as e :
@@ -337,8 +337,8 @@ def transform_feature(x):
337
337
# check accuracy
338
338
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
339
339
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
340
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
341
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
340
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
341
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
342
342
print (model_type , train_acc , test_acc )
343
343
344
344
except ARTTestException as e :
@@ -387,8 +387,8 @@ def transform_feature(x):
387
387
# check accuracy
388
388
train_acc = np .sum (inferred_train == x_train_feature .reshape (1 , - 1 )) / len (inferred_train )
389
389
test_acc = np .sum (inferred_test == x_test_feature .reshape (1 , - 1 )) / len (inferred_test )
390
- assert pytest .approx (0.8285 , abs = 0.3 ) == train_acc
391
- assert pytest .approx (0.8888 , abs = 0.3 ) == test_acc
390
+ assert pytest .approx (0.8285 , abs = 0.35 ) == train_acc
391
+ assert pytest .approx (0.8888 , abs = 0.35 ) == test_acc
392
392
print (model_type , train_acc , test_acc )
393
393
394
394
except ARTTestException as e :
0 commit comments