|
| 1 | +@testset "logdensityproblems.jl" begin |
| 2 | + # Add worker processes. |
| 3 | + # Memory requirements on Windows are ~4x larger than on Linux, hence number of processes is reduced |
| 4 | + # See, e.g., https://github.com/JuliaLang/julia/issues/40766 and https://github.com/JuliaLang/Pkg.jl/pull/2366 |
| 5 | + pids = addprocs(Sys.iswindows() ? div(Sys.CPU_THREADS::Int, 2) : Sys.CPU_THREADS::Int) |
| 6 | + |
| 7 | + # Load all required packages (`utils.jl` needs LogDensityProblems, Logging, and Random). |
| 8 | + @everywhere begin |
| 9 | + using AbstractMCMC |
| 10 | + using AbstractMCMC: sample |
| 11 | + using LogDensityProblems |
| 12 | + |
| 13 | + using Logging |
| 14 | + using Random |
| 15 | + include("utils.jl") |
| 16 | + end |
| 17 | + |
| 18 | + @testset "LogDensityModel" begin |
| 19 | + ℓ = MyLogDensity(10) |
| 20 | + model = @inferred AbstractMCMC.LogDensityModel(ℓ) |
| 21 | + @test model isa AbstractMCMC.LogDensityModel{MyLogDensity} |
| 22 | + @test model.logdensity === ℓ |
| 23 | + |
| 24 | + @test_throws ArgumentError AbstractMCMC.LogDensityModel(mylogdensity) |
| 25 | + end |
| 26 | + |
| 27 | + @testset "fallback for log densities" begin |
| 28 | + # Sample with log density |
| 29 | + dim = 10 |
| 30 | + ℓ = MyLogDensity(dim) |
| 31 | + Random.seed!(1234) |
| 32 | + N = 1_000 |
| 33 | + samples = sample(ℓ, MySampler(), N) |
| 34 | + |
| 35 | + # Samples are of the correct dimension and log density values are correct |
| 36 | + @test length(samples) == N |
| 37 | + @test all(length(x.a) == dim for x in samples) |
| 38 | + @test all(x.b ≈ LogDensityProblems.logdensity(ℓ, x.a) for x in samples) |
| 39 | + |
| 40 | + # Same chain as if LogDensityModel is used explicitly |
| 41 | + Random.seed!(1234) |
| 42 | + samples2 = sample(AbstractMCMC.LogDensityModel(ℓ), MySampler(), N) |
| 43 | + @test length(samples2) == N |
| 44 | + @test all(x.a == y.a && x.b == y.b for (x, y) in zip(samples, samples2)) |
| 45 | + |
| 46 | + # Same chain if sampling is performed with convergence criterion |
| 47 | + Random.seed!(1234) |
| 48 | + isdone(rng, model, sampler, state, samples, iteration; kwargs...) = iteration > N |
| 49 | + samples3 = sample(ℓ, MySampler(), isdone) |
| 50 | + @test length(samples3) == N |
| 51 | + @test all(x.a == y.a && x.b == y.b for (x, y) in zip(samples, samples3)) |
| 52 | + |
| 53 | + # Same chain if sampling is performed with iterator |
| 54 | + Random.seed!(1234) |
| 55 | + samples4 = collect(Iterators.take(AbstractMCMC.steps(ℓ, MySampler()), N)) |
| 56 | + @test length(samples4) == N |
| 57 | + @test all(x.a == y.a && x.b == y.b for (x, y) in zip(samples, samples4)) |
| 58 | + |
| 59 | + # Same chain if sampling is performed with transducer |
| 60 | + Random.seed!(1234) |
| 61 | + xf = AbstractMCMC.Sample(ℓ, MySampler()) |
| 62 | + samples5 = collect(xf(1:N)) |
| 63 | + @test length(samples5) == N |
| 64 | + @test all(x.a == y.a && x.b == y.b for (x, y) in zip(samples, samples5)) |
| 65 | + |
| 66 | + # Parallel sampling |
| 67 | + for alg in (MCMCSerial(), MCMCDistributed(), MCMCThreads()) |
| 68 | + chains = sample(ℓ, MySampler(), alg, N, 2) |
| 69 | + @test length(chains) == 2 |
| 70 | + samples = vcat(chains[1], chains[2]) |
| 71 | + @test length(samples) == 2 * N |
| 72 | + @test all(length(x.a) == dim for x in samples) |
| 73 | + @test all(x.b ≈ LogDensityProblems.logdensity(ℓ, x.a) for x in samples) |
| 74 | + end |
| 75 | + |
| 76 | + # Log density has to satisfy the LogDensityProblems interface |
| 77 | + @test_throws ArgumentError sample(mylogdensity, MySampler(), N) |
| 78 | + @test_throws ArgumentError sample(mylogdensity, MySampler(), isdone) |
| 79 | + @test_throws ArgumentError sample(mylogdensity, MySampler(), MCMCSerial(), N, 2) |
| 80 | + @test_throws ArgumentError sample(mylogdensity, MySampler(), MCMCThreads(), N, 2) |
| 81 | + @test_throws ArgumentError sample( |
| 82 | + mylogdensity, MySampler(), MCMCDistributed(), N, 2 |
| 83 | + ) |
| 84 | + @test_throws ArgumentError AbstractMCMC.steps(mylogdensity, MySampler()) |
| 85 | + @test_throws ArgumentError AbstractMCMC.Sample(mylogdensity, MySampler()) |
| 86 | + end |
| 87 | + |
| 88 | + # Remove workers |
| 89 | + rmprocs(pids...) |
| 90 | +end |
0 commit comments