|
| 1 | +using LogDensityProblems, Distributions, LinearAlgebra, Random |
| 2 | +using OrderedCollections |
| 3 | +## Define a simple GMM problem |
| 4 | + |
| 5 | +struct GMM{Tdata} |
| 6 | + data::NamedTuple |
| 7 | +end |
| 8 | + |
| 9 | +struct ConditionedGMM{conditioned_vars} |
| 10 | + data::NamedTuple |
| 11 | + conditioned_values::NamedTuple{conditioned_vars} |
| 12 | +end |
| 13 | + |
| 14 | +function log_joint(;μ, w, z, x) |
| 15 | + # μ is mean of each component |
| 16 | + # w is weights of each component |
| 17 | + # z is assignment of each data point |
| 18 | + # x is data |
| 19 | + |
| 20 | + K = 2 |
| 21 | + D = 2 |
| 22 | + N = size(x, 1) |
| 23 | + logp = .0 |
| 24 | + |
| 25 | + μ_prior = MvNormal(zeros(K), I) |
| 26 | + logp += sum(logpdf(μ_prior, μ)) |
| 27 | + |
| 28 | + w_prior = Dirichlet(K, 1.0) |
| 29 | + logp += logpdf(w_prior, w) |
| 30 | + |
| 31 | + z_prior = Categorical(w) |
| 32 | + logp += sum([logpdf(z_prior, z[i]) for i in 1:N]) |
| 33 | + |
| 34 | + for i in 1:N |
| 35 | + logp += logpdf(MvNormal(fill(μ[z[i]], D), I), x[i, :]) |
| 36 | + end |
| 37 | + |
| 38 | + return logp |
| 39 | +end |
| 40 | + |
| 41 | +function condition(gmm::GMM, conditioned_values::NamedTuple) |
| 42 | + return ConditionedGMM(gmm.data, conditioned_values) |
| 43 | +end |
| 44 | + |
| 45 | +function logdensity(gmm::ConditionedGMM{conditioned_vars}, params) where {conditioned_vars} |
| 46 | + if conditioned_vars == (:μ, :w) |
| 47 | + return log_joint(;μ=gmm.conditioned_values.μ, w=gmm.conditioned_values.w, z=params.z, x=gmm.data) |
| 48 | + elseif conditioned_vars == (:z,) |
| 49 | + return log_joint(;μ=params.μ, w=params.w, z=gmm.conditioned_values.z, x=gmm.data) |
| 50 | + else |
| 51 | + throw(ArgumentError("condition group not supported")) |
| 52 | + end |
| 53 | +end |
| 54 | + |
| 55 | +function LogDensityProblems.logdensity(gmm::ConditionedGMM{conditioned_vars}, params_vec::AbstractVector) where {conditioned_vars} |
| 56 | + if conditioned_vars == (:μ, :w) |
| 57 | + params = (; z= params_vec) |
| 58 | + elseif conditioned_vars == (:z,) |
| 59 | + params = (; μ= params_vec[1:2], w= params_vec[3:4]) |
| 60 | + else |
| 61 | + throw(ArgumentError("condition group not supported")) |
| 62 | + end |
| 63 | + |
| 64 | + return logdensity(gmm, params) |
| 65 | +end |
| 66 | + |
| 67 | +function LogDensityProblems.dimension(gmm::ConditionedGMM{conditioned_vars}) where {conditioned_vars} |
| 68 | + if conditioned_vars == (:μ, :w) |
| 69 | + return size(gmm.data.x, 1) |
| 70 | + elseif conditioned_vars == (:z,) |
| 71 | + return size(gmm.data.x, 1) |
| 72 | + else |
| 73 | + throw(ArgumentError("condition group not supported")) |
| 74 | + end |
| 75 | +end |
| 76 | + |
| 77 | +struct Gibbs <: AbstractMCMC.AbstractSampler |
| 78 | + sampler_map::OrderedDict |
| 79 | +end |
| 80 | + |
| 81 | +# ! initialize the params here |
| 82 | +struct GibbsState |
| 83 | + "contains all the values of the model parameters" |
| 84 | + values::NamedTuple |
| 85 | + states::OrderedDict |
| 86 | +end |
| 87 | + |
| 88 | +struct GibbsTransition |
| 89 | + values::NamedTuple |
| 90 | +end |
| 91 | + |
| 92 | +function AbstractMCMC.step( |
| 93 | + rng::AbstractRNG, model, sampler::Gibbs, args...; initial_params::NamedTuple, kwargs... |
| 94 | +) |
| 95 | + states = OrderedDict() |
| 96 | + for group in collect(keys(sampler.sampler_map)) |
| 97 | + sampler = sampler.sampler_map[group] |
| 98 | + cond_val = NamedTuple{group}([initial_params[g] for g in group]...) |
| 99 | + trans, state = AbstractMCMC.step(rng, condition(model, cond_val), sampler, args...; kwargs...) |
| 100 | + states[group] = state |
| 101 | + end |
| 102 | + return GibbsTransition(initial_params), GibbsState(initial_params, states) |
| 103 | +end |
| 104 | + |
| 105 | +# questions is: when do we assume the logp from last iteration is not reliable anymore |
| 106 | + |
| 107 | +function AbstractMCMC.step( |
| 108 | + rng::AbstractRNG, model, sampler::Gibbs, state::GibbsState, args...; kwargs... |
| 109 | +) |
| 110 | + for group in collect(keys(sampler.sampler_map)) |
| 111 | + sampler = sampler.sampler_map[group] |
| 112 | + state = state.states[group] |
| 113 | + trans, state = AbstractMCMC.step(rng, condition(model, state.values[group]), sampler, state, args...; kwargs...) |
| 114 | + # TODO: what values to condition on here? stored where? |
| 115 | + state.states[group] = state |
| 116 | + end |
| 117 | + return |
| 118 | +end |
| 119 | + |
| 120 | +# importance sampling |
| 121 | +struct ImportanceSampling <: AbstractMCMC.AbstractSampler |
| 122 | + "number of samples" |
| 123 | + n::Int |
| 124 | + proposal |
| 125 | +end |
| 126 | + |
| 127 | +struct ImportanceSamplingState |
| 128 | + |
| 129 | +end |
| 130 | + |
| 131 | +struct ImportanceSamplingTransition |
| 132 | + values |
| 133 | +end |
| 134 | + |
| 135 | +# initial step |
| 136 | +function AbstractMCMC.step( |
| 137 | + rng::AbstractRNG, logdensity, sampler::ImportanceSampling, args...; kwargs... |
| 138 | +) |
| 139 | + |
| 140 | +end |
| 141 | + |
| 142 | +function IS_step(rng::AbstractRNG, logdensity, sampler::ImportanceSampling, state::ImportanceSamplingState, args...; kwargs...) |
| 143 | + proposals = rand(rng, sampler.proposal, sampler.n) |
| 144 | + weights = logdensity.(proposals) .- log.(logpdf.(sampler.proposal, proposals)) |
| 145 | + sample = rand(rng, Categorical(softmax(weights))) |
| 146 | + return ImportanceSamplingTransition(proposals[sample]), ImportanceSamplingState() |
| 147 | +end |
| 148 | + |
| 149 | + |
| 150 | +function AbstractMCMC.step( |
| 151 | + rng::AbstractRNG, logdensity, sampler::ImportanceSampling, state::ImportanceSamplingState, args...; kwargs... |
| 152 | +) |
| 153 | + return |
| 154 | +end |
| 155 | + |
| 156 | +struct RWMH <: AbstractMCMC.AbstractSampler |
| 157 | + proposal |
| 158 | +end |
| 159 | + |
| 160 | +function AbstractMCMC.step( |
| 161 | + rng::AbstractRNG, logdensity, sampler::RWMH, args...; kwargs... |
| 162 | +) |
| 163 | + proposal = rand(rng, sampler.proposal) |
| 164 | + |
| 165 | + acceptance_probability = min(1, exp(logdensity(proposal) - logdensity(args[1]))) |
| 166 | + if rand(rng) < acceptance_probability |
| 167 | + return proposal, nothing |
| 168 | + else |
| 169 | + return args[1], nothing |
| 170 | + end |
| 171 | +end |
| 172 | + |
| 173 | +function AbstractMCMC.step( |
| 174 | + rng::AbstractRNG, logdensity, sampler::RWMH, state::RWMHState, args...; kwargs... |
| 175 | +) |
| 176 | + return |
| 177 | +end |
0 commit comments