|
| 1 | +using LinearAlgebra: LinearAlgebra |
| 2 | + |
| 3 | +""" |
| 4 | + varname_leaves(vn::VarName, val) |
| 5 | +
|
| 6 | +Return an iterator over all varnames that are represented by `vn` on `val`. |
| 7 | +
|
| 8 | +# Examples |
| 9 | +```jldoctest |
| 10 | +julia> using AbstractPPL: varname_leaves |
| 11 | +
|
| 12 | +julia> foreach(println, varname_leaves(@varname(x), rand(2))) |
| 13 | +x[1] |
| 14 | +x[2] |
| 15 | +
|
| 16 | +julia> foreach(println, varname_leaves(@varname(x[1:2]), rand(2))) |
| 17 | +x[1:2][1] |
| 18 | +x[1:2][2] |
| 19 | +
|
| 20 | +julia> x = (y = 1, z = [[2.0], [3.0]]); |
| 21 | +
|
| 22 | +julia> foreach(println, varname_leaves(@varname(x), x)) |
| 23 | +x.y |
| 24 | +x.z[1][1] |
| 25 | +x.z[2][1] |
| 26 | +``` |
| 27 | +""" |
| 28 | +varname_leaves(vn::VarName, ::Real) = [vn] |
| 29 | +function varname_leaves(vn::VarName, val::AbstractArray{<:Union{Real,Missing}}) |
| 30 | + return ( |
| 31 | + VarName{getsym(vn)}(Accessors.IndexLens(Tuple(I)) ∘ getoptic(vn)) for |
| 32 | + I in CartesianIndices(val) |
| 33 | + ) |
| 34 | +end |
| 35 | +function varname_leaves(vn::VarName, val::AbstractArray) |
| 36 | + return Iterators.flatten( |
| 37 | + varname_leaves( |
| 38 | + VarName{getsym(vn)}(Accessors.IndexLens(Tuple(I)) ∘ getoptic(vn)), val[I] |
| 39 | + ) for I in CartesianIndices(val) |
| 40 | + ) |
| 41 | +end |
| 42 | +function varname_leaves(vn::VarName, val::NamedTuple) |
| 43 | + iter = Iterators.map(keys(val)) do k |
| 44 | + optic = Accessors.PropertyLens{k}() |
| 45 | + varname_leaves(VarName{getsym(vn)}(optic ∘ getoptic(vn)), optic(val)) |
| 46 | + end |
| 47 | + return Iterators.flatten(iter) |
| 48 | +end |
| 49 | + |
| 50 | +""" |
| 51 | + varname_and_value_leaves(vn::VarName, val) |
| 52 | +
|
| 53 | +Return an iterator over all varname-value pairs that are represented by `vn` on `val`. |
| 54 | +
|
| 55 | +# Examples |
| 56 | +```jldoctest varname-and-value-leaves |
| 57 | +julia> using AbstractPPL: varname_and_value_leaves |
| 58 | +
|
| 59 | +julia> foreach(println, varname_and_value_leaves(@varname(x), 1:2)) |
| 60 | +(x[1], 1) |
| 61 | +(x[2], 2) |
| 62 | +
|
| 63 | +julia> foreach(println, varname_and_value_leaves(@varname(x[1:2]), 1:2)) |
| 64 | +(x[1:2][1], 1) |
| 65 | +(x[1:2][2], 2) |
| 66 | +
|
| 67 | +julia> x = (y = 1, z = [[2.0], [3.0]]); |
| 68 | +
|
| 69 | +julia> foreach(println, varname_and_value_leaves(@varname(x), x)) |
| 70 | +(x.y, 1) |
| 71 | +(x.z[1][1], 2.0) |
| 72 | +(x.z[2][1], 3.0) |
| 73 | +``` |
| 74 | +
|
| 75 | +There is also some special handling for certain types: |
| 76 | +
|
| 77 | +```jldoctest varname-and-value-leaves |
| 78 | +julia> using LinearAlgebra |
| 79 | +
|
| 80 | +julia> x = reshape(1:4, 2, 2); |
| 81 | +
|
| 82 | +julia> # `LowerTriangular` |
| 83 | + foreach(println, varname_and_value_leaves(@varname(x), LowerTriangular(x))) |
| 84 | +(x[1, 1], 1) |
| 85 | +(x[2, 1], 2) |
| 86 | +(x[2, 2], 4) |
| 87 | +
|
| 88 | +julia> # `UpperTriangular` |
| 89 | + foreach(println, varname_and_value_leaves(@varname(x), UpperTriangular(x))) |
| 90 | +(x[1, 1], 1) |
| 91 | +(x[1, 2], 3) |
| 92 | +(x[2, 2], 4) |
| 93 | +
|
| 94 | +julia> # `Cholesky` with lower-triangular |
| 95 | + foreach(println, varname_and_value_leaves(@varname(x), Cholesky([1.0 0.0; 0.0 1.0], 'L', 0))) |
| 96 | +(x.L[1, 1], 1.0) |
| 97 | +(x.L[2, 1], 0.0) |
| 98 | +(x.L[2, 2], 1.0) |
| 99 | +
|
| 100 | +julia> # `Cholesky` with upper-triangular |
| 101 | + foreach(println, varname_and_value_leaves(@varname(x), Cholesky([1.0 0.0; 0.0 1.0], 'U', 0))) |
| 102 | +(x.U[1, 1], 1.0) |
| 103 | +(x.U[1, 2], 0.0) |
| 104 | +(x.U[2, 2], 1.0) |
| 105 | +``` |
| 106 | +""" |
| 107 | +function varname_and_value_leaves(vn::VarName, x) |
| 108 | + return Iterators.map(value, Iterators.flatten(varname_and_value_leaves_inner(vn, x))) |
| 109 | +end |
| 110 | + |
| 111 | +""" |
| 112 | + varname_and_value_leaves(container) |
| 113 | +
|
| 114 | +Return an iterator over all varname-value pairs that are represented by `container`. |
| 115 | +
|
| 116 | +This is the same as [`varname_and_value_leaves(vn::VarName, x)`](@ref) but over a container |
| 117 | +containing multiple varnames. |
| 118 | +
|
| 119 | +See also: [`varname_and_value_leaves(vn::VarName, x)`](@ref). |
| 120 | +
|
| 121 | +# Examples |
| 122 | +```jldoctest varname-and-value-leaves-container |
| 123 | +julia> using AbstractPPL: varname_and_value_leaves |
| 124 | +
|
| 125 | +julia> using OrderedCollections: OrderedDict |
| 126 | +
|
| 127 | +julia> # With an `AbstractDict` (we use `OrderedDict` here |
| 128 | + # to ensure consistent ordering in doctests) |
| 129 | + dict = OrderedDict(@varname(y) => 1, @varname(z) => [[2.0], [3.0]]); |
| 130 | +
|
| 131 | +julia> foreach(println, varname_and_value_leaves(dict)) |
| 132 | +(y, 1) |
| 133 | +(z[1][1], 2.0) |
| 134 | +(z[2][1], 3.0) |
| 135 | +
|
| 136 | +julia> # With a `NamedTuple` |
| 137 | + nt = (y = 1, z = [[2.0], [3.0]]); |
| 138 | +
|
| 139 | +julia> foreach(println, varname_and_value_leaves(nt)) |
| 140 | +(y, 1) |
| 141 | +(z[1][1], 2.0) |
| 142 | +(z[2][1], 3.0) |
| 143 | +``` |
| 144 | +""" |
| 145 | +function varname_and_value_leaves(container::AbstractDict) |
| 146 | + return Iterators.flatten(varname_and_value_leaves(k, v) for (k, v) in container) |
| 147 | +end |
| 148 | +function varname_and_value_leaves(container::NamedTuple) |
| 149 | + return Iterators.flatten( |
| 150 | + varname_and_value_leaves(VarName{k}(), v) for (k, v) in pairs(container) |
| 151 | + ) |
| 152 | +end |
| 153 | + |
| 154 | +""" |
| 155 | + Leaf{T} |
| 156 | +
|
| 157 | +A container that represents the leaf of a nested structure, implementing |
| 158 | +`iterate` to return itself. |
| 159 | +
|
| 160 | +This is particularly useful in conjunction with `Iterators.flatten` to |
| 161 | +prevent flattening of nested structures. |
| 162 | +""" |
| 163 | +struct Leaf{T} |
| 164 | + value::T |
| 165 | +end |
| 166 | + |
| 167 | +Leaf(xs...) = Leaf(xs) |
| 168 | + |
| 169 | +# Allow us to treat `Leaf` as an iterator containing a single element. |
| 170 | +# Something like an `[x]` would also be an iterator with a single element, |
| 171 | +# but when we call `flatten` on this, it would also iterate over `x`, |
| 172 | +# unflattening that too. By making `Leaf` a single-element iterator, which |
| 173 | +# returns itself, we can call `iterate` on this as many times as we like |
| 174 | +# without causing any change. The result is that `Iterators.flatten` |
| 175 | +# will _not_ unflatten `Leaf`s. |
| 176 | +# Note that this is similar to how `Base.iterate` is implemented for `Real`:: |
| 177 | +# |
| 178 | +# julia> iterate(1) |
| 179 | +# (1, nothing) |
| 180 | +# |
| 181 | +# One immediate example where this becomes in our scenario is that we might |
| 182 | +# have `missing` values in our data, which does _not_ have an `iterate` |
| 183 | +# implemented. Calling `Iterators.flatten` on this would cause an error. |
| 184 | +Base.iterate(leaf::Leaf) = leaf, nothing |
| 185 | +Base.iterate(::Leaf, _) = nothing |
| 186 | + |
| 187 | +# Convenience. |
| 188 | +value(leaf::Leaf) = leaf.value |
| 189 | + |
| 190 | +# Leaf-types. |
| 191 | +varname_and_value_leaves_inner(vn::VarName, x::Real) = [Leaf(vn, x)] |
| 192 | +function varname_and_value_leaves_inner( |
| 193 | + vn::VarName, val::AbstractArray{<:Union{Real,Missing}} |
| 194 | +) |
| 195 | + return ( |
| 196 | + Leaf( |
| 197 | + VarName{getsym(vn)}(Accessors.IndexLens(Tuple(I)) ∘ AbstractPPL.getoptic(vn)), |
| 198 | + val[I], |
| 199 | + ) for I in CartesianIndices(val) |
| 200 | + ) |
| 201 | +end |
| 202 | +# Containers. |
| 203 | +function varname_and_value_leaves_inner(vn::VarName, val::AbstractArray) |
| 204 | + return Iterators.flatten( |
| 205 | + varname_and_value_leaves_inner( |
| 206 | + VarName{getsym(vn)}(Accessors.IndexLens(Tuple(I)) ∘ AbstractPPL.getoptic(vn)), |
| 207 | + val[I], |
| 208 | + ) for I in CartesianIndices(val) |
| 209 | + ) |
| 210 | +end |
| 211 | +function varname_and_value_leaves_inner(vn::VarName, val::NamedTuple) |
| 212 | + iter = Iterators.map(keys(val)) do k |
| 213 | + optic = Accessors.PropertyLens{k}() |
| 214 | + varname_and_value_leaves_inner( |
| 215 | + VarName{getsym(vn)}(optic ∘ getoptic(vn)), optic(val) |
| 216 | + ) |
| 217 | + end |
| 218 | + |
| 219 | + return Iterators.flatten(iter) |
| 220 | +end |
| 221 | +# Special types. |
| 222 | +function varname_and_value_leaves_inner(vn::VarName, x::LinearAlgebra.Cholesky) |
| 223 | + # TODO: Or do we use `PDMat` here? |
| 224 | + return if x.uplo == 'L' |
| 225 | + varname_and_value_leaves_inner(Accessors.PropertyLens{:L}() ∘ vn, x.L) |
| 226 | + else |
| 227 | + varname_and_value_leaves_inner(Accessors.PropertyLens{:U}() ∘ vn, x.U) |
| 228 | + end |
| 229 | +end |
| 230 | +function varname_and_value_leaves_inner(vn::VarName, x::LinearAlgebra.LowerTriangular) |
| 231 | + return ( |
| 232 | + Leaf(VarName{getsym(vn)}(Accessors.IndexLens(Tuple(I)) ∘ getoptic(vn)), x[I]) |
| 233 | + # Iteration over the lower-triangular indices. |
| 234 | + for I in CartesianIndices(x) if I[1] >= I[2] |
| 235 | + ) |
| 236 | +end |
| 237 | +function varname_and_value_leaves_inner(vn::VarName, x::LinearAlgebra.UpperTriangular) |
| 238 | + return ( |
| 239 | + Leaf(VarName{getsym(vn)}(Accessors.IndexLens(Tuple(I)) ∘ getoptic(vn)), x[I]) |
| 240 | + # Iteration over the upper-triangular indices. |
| 241 | + for I in CartesianIndices(x) if I[1] <= I[2] |
| 242 | + ) |
| 243 | +end |
0 commit comments