|
| 1 | +""" |
| 2 | +$(TYPEDEF) |
| 3 | +
|
| 4 | +Generalized leapfrog integrator with fixed step size `ϵ`. |
| 5 | +
|
| 6 | +# Fields |
| 7 | +
|
| 8 | +$(TYPEDFIELDS) |
| 9 | +
|
| 10 | +
|
| 11 | +## References |
| 12 | +
|
| 13 | +1. Girolami, Mark, and Ben Calderhead. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods." Journal of the Royal Statistical Society Series B: Statistical Methodology 73, no. 2 (2011): 123-214. |
| 14 | +""" |
| 15 | +struct GeneralizedLeapfrog{T<:AbstractScalarOrVec{<:AbstractFloat}} <: AbstractLeapfrog{T} |
| 16 | + "Step size." |
| 17 | + ϵ::T |
| 18 | + n::Int |
| 19 | +end |
| 20 | +Base.show(io::IO, l::GeneralizedLeapfrog) = |
| 21 | + print(io, "GeneralizedLeapfrog(ϵ=$(round.(l.ϵ; sigdigits=3)), n=$(l.n))") |
| 22 | + |
| 23 | +# fallback to ignore return_cache & cache kwargs for other ∂H∂θ |
| 24 | +function ∂H∂θ_cache(h, θ, r; return_cache = false, cache = nothing) |
| 25 | + dv = ∂H∂θ(h, θ, r) |
| 26 | + return return_cache ? (dv, nothing) : dv |
| 27 | +end |
| 28 | + |
| 29 | +# TODO(Kai) make sure vectorization works |
| 30 | +# TODO(Kai) check if tempering is valid |
| 31 | +# TODO(Kai) abstract out the 3 main steps and merge with `step` in `integrator.jl` |
| 32 | +function step( |
| 33 | + lf::GeneralizedLeapfrog{T}, |
| 34 | + h::Hamiltonian, |
| 35 | + z::P, |
| 36 | + n_steps::Int = 1; |
| 37 | + fwd::Bool = n_steps > 0, # simulate hamiltonian backward when n_steps < 0 |
| 38 | + full_trajectory::Val{FullTraj} = Val(false), |
| 39 | +) where {T<:AbstractScalarOrVec{<:AbstractFloat},TP,P<:PhasePoint{TP},FullTraj} |
| 40 | + n_steps = abs(n_steps) # to support `n_steps < 0` cases |
| 41 | + |
| 42 | + ϵ = fwd ? step_size(lf) : -step_size(lf) |
| 43 | + ϵ = ϵ' |
| 44 | + |
| 45 | + if !(T <: AbstractFloat) || !(TP <: AbstractVector) |
| 46 | + @warn "Vectorization is not tested for GeneralizedLeapfrog." |
| 47 | + end |
| 48 | + |
| 49 | + res = if FullTraj |
| 50 | + Vector{P}(undef, n_steps) |
| 51 | + else |
| 52 | + z |
| 53 | + end |
| 54 | + |
| 55 | + for i = 1:n_steps |
| 56 | + θ_init, r_init = z.θ, z.r |
| 57 | + # Tempering |
| 58 | + #r = temper(lf, r, (i=i, is_half=true), n_steps) |
| 59 | + # eq (16) of Girolami & Calderhead (2011) |
| 60 | + r_half = r_init |
| 61 | + local cache |
| 62 | + for j = 1:lf.n |
| 63 | + # Reuse cache for the first iteration |
| 64 | + if j == 1 |
| 65 | + @unpack value, gradient = z.ℓπ |
| 66 | + elseif j == 2 # cache intermediate values that depends on θ only (which are unchanged) |
| 67 | + retval, cache = ∂H∂θ_cache(h, θ_init, r_half; return_cache = true) |
| 68 | + @unpack value, gradient = retval |
| 69 | + else # reuse cache |
| 70 | + @unpack value, gradient = ∂H∂θ_cache(h, θ_init, r_half; cache = cache) |
| 71 | + end |
| 72 | + r_half = r_init - ϵ / 2 * gradient |
| 73 | + end |
| 74 | + # eq (17) of Girolami & Calderhead (2011) |
| 75 | + θ_full = θ_init |
| 76 | + term_1 = ∂H∂r(h, θ_init, r_half) # unchanged across the loop |
| 77 | + for j = 1:lf.n |
| 78 | + θ_full = θ_init + ϵ / 2 * (term_1 + ∂H∂r(h, θ_full, r_half)) |
| 79 | + end |
| 80 | + # eq (18) of Girolami & Calderhead (2011) |
| 81 | + @unpack value, gradient = ∂H∂θ(h, θ_full, r_half) |
| 82 | + r_full = r_half - ϵ / 2 * gradient |
| 83 | + # Tempering |
| 84 | + #r = temper(lf, r, (i=i, is_half=false), n_steps) |
| 85 | + # Create a new phase point by caching the logdensity and gradient |
| 86 | + z = phasepoint(h, θ_full, r_full; ℓπ = DualValue(value, gradient)) |
| 87 | + # Update result |
| 88 | + if FullTraj |
| 89 | + res[i] = z |
| 90 | + else |
| 91 | + res = z |
| 92 | + end |
| 93 | + if !isfinite(z) |
| 94 | + # Remove undef |
| 95 | + if FullTraj |
| 96 | + res = res[isassigned.(Ref(res), 1:n_steps)] |
| 97 | + end |
| 98 | + break |
| 99 | + end |
| 100 | + end |
| 101 | + return res |
| 102 | +end |
0 commit comments