@@ -38,7 +38,7 @@ A convenient wrapper around `AbstractMCMC.sample` avoiding explicit construction
38
38
39
39
function AbstractMCMC. sample (
40
40
rng:: Random.AbstractRNG ,
41
- model:: LogDensityModel ,
41
+ model:: AbstractMCMC. LogDensityModel ,
42
42
sampler:: AbstractHMCSampler ,
43
43
N:: Integer ;
44
44
n_adapts:: Int = min (div (N, 10 ), 1_000 ),
67
67
68
68
function AbstractMCMC. sample (
69
69
rng:: Random.AbstractRNG ,
70
- model:: LogDensityModel ,
70
+ model:: AbstractMCMC. LogDensityModel ,
71
71
sampler:: AbstractHMCSampler ,
72
72
parallel:: AbstractMCMC.AbstractMCMCEnsemble ,
73
73
N:: Integer ,
@@ -101,17 +101,11 @@ end
101
101
102
102
function AbstractMCMC. step (
103
103
rng:: AbstractRNG ,
104
- model:: LogDensityModel ,
104
+ model:: AbstractMCMC. LogDensityModel ,
105
105
spl:: AbstractHMCSampler ;
106
106
initial_params = nothing ,
107
- init_params = initial_params,
108
107
kwargs... ,
109
108
)
110
- if init_params != = initial_params
111
- Base. depwarn (" `init_params` is deprecated, use `initial_params` instead" , :step )
112
- initial_params = init_params
113
- end
114
-
115
109
# Unpack model
116
110
logdensity = model. logdensity
117
111
@@ -123,7 +117,7 @@ function AbstractMCMC.step(
123
117
124
118
# Define integration algorithm
125
119
# Find good eps if not provided one
126
- initial_params = make_init_params (rng, spl, logdensity, initial_params)
120
+ initial_params = make_initial_params (rng, spl, logdensity, initial_params)
127
121
ϵ = make_step_size (rng, spl, hamiltonian, initial_params)
128
122
integrator = make_integrator (spl, ϵ)
129
123
144
138
145
139
function AbstractMCMC. step (
146
140
rng:: AbstractRNG ,
147
- model:: LogDensityModel ,
141
+ model:: AbstractMCMC. LogDensityModel ,
148
142
spl:: AbstractHMCSampler ,
149
143
state:: HMCState ;
150
144
kwargs... ,
@@ -257,18 +251,18 @@ end
257
251
# ############
258
252
# ## Utils ###
259
253
# ############
260
- function make_init_params (
254
+ function make_initial_params (
261
255
rng:: AbstractRNG ,
262
256
spl:: AbstractHMCSampler ,
263
257
logdensity,
264
- init_params ,
258
+ initial_params ,
265
259
)
266
260
T = sampler_eltype (spl)
267
- if init_params == nothing
261
+ if initial_params == nothing
268
262
d = LogDensityProblems. dimension (logdensity)
269
- init_params = randn (rng, d)
263
+ initial_params = randn (rng, d)
270
264
end
271
- return T .(init_params )
265
+ return T .(initial_params )
272
266
end
273
267
274
268
# ########
@@ -277,21 +271,21 @@ function make_step_size(
277
271
rng:: Random.AbstractRNG ,
278
272
spl:: HMCSampler ,
279
273
hamiltonian:: Hamiltonian ,
280
- init_params ,
274
+ initial_params ,
281
275
)
282
276
T = typeof (spl. κ. τ. integrator. ϵ)
283
- ϵ = make_step_size (rng, spl. κ. τ. integrator, T, hamiltonian, init_params )
277
+ ϵ = make_step_size (rng, spl. κ. τ. integrator, T, hamiltonian, initial_params )
284
278
return ϵ
285
279
end
286
280
287
281
function make_step_size (
288
282
rng:: Random.AbstractRNG ,
289
283
spl:: AbstractHMCSampler ,
290
284
hamiltonian:: Hamiltonian ,
291
- init_params ,
285
+ initial_params ,
292
286
)
293
287
T = sampler_eltype (spl)
294
- return make_step_size (rng, spl. integrator, T, hamiltonian, init_params )
288
+ return make_step_size (rng, spl. integrator, T, hamiltonian, initial_params )
295
289
296
290
end
297
291
@@ -300,12 +294,12 @@ function make_step_size(
300
294
integrator:: AbstractIntegrator ,
301
295
T:: Type ,
302
296
hamiltonian:: Hamiltonian ,
303
- init_params ,
297
+ initial_params ,
304
298
)
305
299
if integrator. ϵ > 0
306
300
ϵ = integrator. ϵ
307
301
else
308
- ϵ = find_good_stepsize (rng, hamiltonian, init_params )
302
+ ϵ = find_good_stepsize (rng, hamiltonian, initial_params )
309
303
@info string (" Found initial step size " , ϵ)
310
304
end
311
305
return T (ϵ)
@@ -316,9 +310,9 @@ function make_step_size(
316
310
integrator:: Symbol ,
317
311
T:: Type ,
318
312
hamiltonian:: Hamiltonian ,
319
- init_params ,
313
+ initial_params ,
320
314
)
321
- ϵ = find_good_stepsize (rng, hamiltonian, init_params )
315
+ ϵ = find_good_stepsize (rng, hamiltonian, initial_params )
322
316
@info string (" Found initial step size " , ϵ)
323
317
return T (ϵ)
324
318
end
0 commit comments