@@ -2,11 +2,11 @@ using AdvancedHMC, AbstractMCMC, Random
2
2
include (" common.jl" )
3
3
4
4
# Initalize samplers
5
- nuts = NUTS (1000 , 0.8 )
6
- nuts_32 = NUTS (1000 , 0.8f0 )
5
+ nuts = NUTS (0.8 )
6
+ nuts_32 = NUTS (0.8f0 )
7
7
hmc = HMC (0.1 , 25 )
8
- hmcda = HMCDA (1000 , 0.8 , 1.0 )
9
- hmcda_32 = HMCDA (1000 , 0.8f0 , 1.0 )
8
+ hmcda = HMCDA (0.8 , 1.0 )
9
+ hmcda_32 = HMCDA (0.8f0 , 1.0 )
10
10
11
11
integrator = Leapfrog (1e-3 )
12
12
kernel = HMCKernel (Trajectory {MultinomialTS} (integrator, GeneralisedNoUTurn ()))
@@ -25,7 +25,6 @@ custom = HMCSampler(kernel, metric, adaptor)
25
25
@test typeof (nuts) <: AbstractMCMC.AbstractSampler
26
26
27
27
# NUTS
28
- @test nuts. n_adapts == 1000
29
28
@test nuts. δ == 0.8
30
29
@test nuts. max_depth == 10
31
30
@test nuts. Δ_max == 1000.0
@@ -34,7 +33,6 @@ custom = HMCSampler(kernel, metric, adaptor)
34
33
@test nuts. metric == :diagonal
35
34
36
35
# NUTS Float32
37
- @test nuts_32. n_adapts == 1000
38
36
@test nuts_32. δ == 0.8f0
39
37
@test nuts_32. max_depth == 10
40
38
@test nuts_32. Δ_max == 1000.0f0
@@ -47,15 +45,13 @@ custom = HMCSampler(kernel, metric, adaptor)
47
45
@test hmc. metric == :diagonal
48
46
49
47
# HMCDA
50
- @test hmcda. n_adapts == 1000
51
48
@test hmcda. δ == 0.8
52
49
@test hmcda. λ == 1.0
53
50
@test hmcda. init_ϵ == 0.0
54
51
@test hmcda. integrator == :leapfrog
55
52
@test hmcda. metric == :diagonal
56
53
57
54
# HMCDA Float32
58
- @test hmcda_32. n_adapts == 1000
59
55
@test hmcda_32. δ == 0.8f0
60
56
@test hmcda_32. λ == 1.0f0
61
57
@test hmcda_32. init_ϵ == 0.0f0
65
61
rng = MersenneTwister (0 )
66
62
θ_init = randn (rng, 2 )
67
63
logdensitymodel = AbstractMCMC. LogDensityModel (ℓπ_gdemo)
68
- _, nuts_state = AbstractMCMC. step (rng, logdensitymodel, nuts; init_params = θ_init)
69
- _, hmc_state = AbstractMCMC. step (rng, logdensitymodel, hmc; init_params = θ_init)
64
+ _, nuts_state =
65
+ AbstractMCMC. step (rng, logdensitymodel, nuts; n_adapts = 0 , init_params = θ_init)
66
+ _, hmc_state =
67
+ AbstractMCMC. step (rng, logdensitymodel, hmc; n_adapts = 0 , init_params = θ_init)
70
68
_, nuts_32_state =
71
- AbstractMCMC. step (rng, logdensitymodel, nuts_32; init_params = θ_init)
72
- _, custom_state = AbstractMCMC. step (rng, logdensitymodel, custom; init_params = θ_init)
69
+ AbstractMCMC. step (rng, logdensitymodel, nuts_32; n_adapts = 0 , init_params = θ_init)
70
+ _, custom_state =
71
+ AbstractMCMC. step (rng, logdensitymodel, custom; n_adapts = 0 , init_params = θ_init)
73
72
74
73
# Metric
75
74
@test typeof (nuts_state. metric) == DiagEuclideanMetric{Float64,Vector{Float64}}
0 commit comments