@@ -29,43 +29,6 @@ function AbstractMCMC.bundle_samples(
29
29
return Chains (vals, param_names, (internals= [" lp" ],))
30
30
end
31
31
32
- # function AbstractMCMC.bundle_samples(
33
- # rng::Random.AbstractRNG,
34
- # model::DensityModel,
35
- # s::Ensemble,
36
- # N::Integer,
37
- # ts::Vector{<:Walker},
38
- # chain_type::Type{Chains};
39
- # param_names=missing,
40
- # kwargs...
41
- # )
42
- # # return ts
43
- # vals = mapreduce(
44
- # t -> map(i -> vcat(ts[t].walkers[i].params,
45
- # ts[t].walkers[i].lp, t, i),
46
- # 1:length(ts[t].walkers)),
47
- # vcat,
48
- # 1:length(ts))
49
-
50
- # vals = Array(reduce(hcat, vals)')
51
-
52
- # # return vals
53
-
54
- # # Check if we received any parameter names.
55
- # if ismissing(param_names)
56
- # param_names = ["param_$i" for i in 1:length(ts[1].walkers[1].params)]
57
- # else
58
- # # Deepcopy to be thread safe.
59
- # param_names = deepcopy(param_names)
60
- # end
61
-
62
- # # Add the log density field to the parameter names.
63
- # push!(param_names, "lp", "iteration", "walker")
64
-
65
- # # Bundle everything up and return a Chains struct.
66
- # return Chains(vals, param_names, (internals=["lp", "iteration", "walker"],))
67
- # end
68
-
69
32
function AbstractMCMC. bundle_samples (
70
33
rng:: Random.AbstractRNG ,
71
34
model:: DensityModel ,
0 commit comments