|
| 1 | +@testset "emcee.jl" begin |
| 2 | + @testset "example" begin |
| 3 | + @testset "untransformed space" begin |
| 4 | + # define model |
| 5 | + function logprob(θ) |
| 6 | + s, m = θ |
| 7 | + s > 0 || return -Inf |
| 8 | + |
| 9 | + mdist = Normal(0, sqrt(s)) |
| 10 | + obsdist = Normal(m, sqrt(s)) |
| 11 | + |
| 12 | + return logpdf(InverseGamma(2, 3), s) + logpdf(mdist, m) + |
| 13 | + logpdf(obsdist, 1.5) + logpdf(obsdist, 2.0) |
| 14 | + end |
| 15 | + model = DensityModel(logprob) |
| 16 | + |
| 17 | + # perform stretch move and sample from prior in initial step |
| 18 | + Random.seed!(100) |
| 19 | + sampler = Ensemble(1_000, StretchProposal([InverseGamma(2, 3), Normal(0, 1)])) |
| 20 | + chain = sample(model, sampler, 1_000; |
| 21 | + param_names = ["s", "m"], chain_type = Chains) |
| 22 | + |
| 23 | + @test mean(chain["s"].value) ≈ 49/24 atol=0.1 |
| 24 | + @test mean(chain["m"].value) ≈ 7/6 atol=0.1 |
| 25 | + end |
| 26 | + |
| 27 | + @testset "transformed space" begin |
| 28 | + # define model |
| 29 | + function logprob(θ) |
| 30 | + logs, m = θ |
| 31 | + s = exp(logs) |
| 32 | + sqrts = sqrt(s) |
| 33 | + |
| 34 | + mdist = Normal(0, sqrts) |
| 35 | + obsdist = Normal(m, sqrts) |
| 36 | + |
| 37 | + return logpdf(InverseGamma(2, 3), s) + logpdf(mdist, m) + |
| 38 | + logpdf(obsdist, 1.5) + logpdf(obsdist, 2.0) + logs |
| 39 | + end |
| 40 | + model = DensityModel(logprob) |
| 41 | + |
| 42 | + # perform stretch move and sample from normal distribution in initial step |
| 43 | + Random.seed!(100) |
| 44 | + sampler = Ensemble(1_000, StretchProposal(MvNormal(2, 1))) |
| 45 | + chain = sample(model, sampler, 1_000; |
| 46 | + param_names = ["logs", "m"], chain_type = Chains) |
| 47 | + |
| 48 | + @test mean(exp.(chain["logs"].value)) ≈ 49/24 atol=0.1 |
| 49 | + @test mean(chain["m"].value) ≈ 7/6 atol=0.1 |
| 50 | + end |
| 51 | + end |
| 52 | +end |
0 commit comments