Skip to content

Possible error in ram_adapt during rank one update/downdate? #113

@alicedb2

Description

@alicedb2

The cholesky decomposition $S_n S_n^T$ is updated using a rank one up/downdate using the following

https://github.com/TuringLang/AdvancedMH.jl/blob/56062a892416d20a0e67c8939c88e82e2ec9b539/src/RobustAdaptiveMetropolis.jl#L163C1-L163C55

The way it's written, we have

$$\Delta S = \eta \vert\Delta\alpha\vert \frac{S U}{\Vert U\Vert}$$

and the rank one update ($\text{sgn}(\Delta\alpha) = 1$) or downdate ($\text{sgn}(\Delta\alpha) = -1$)

$$S_n S_n^T = S_{n-1} S_{n-1}^T + \text{sgn}(\Delta\alpha) (\Delta S) (\Delta S)^T$$ $$ = S_{n-1} S_{n-1}^T \pm \eta^2 (\alpha - \alpha^*)^2 S_{n-1} \frac{U U^T}{\Vert U\Vert^2} S_{n-1}^T$$

$$ = S_{n-1}\left(I \pm \eta^2 \vert\alpha - \alpha^*\vert^2\frac{U U^T}{\Vert U\Vert^2}\right)S_{n-1}^T$$

This update in the original article Vihola 2012 appears in equation 1 as

$$S_n S_n^T = S_{n-1}\left(I + \eta (\alpha - \alpha^*) \frac{U U^T}{\Vert U\Vert^2}\right) S_{n-1}^T$$

So I'm wondering if there's an extra factor of $\eta\Delta\alpha$ and if $\Delta S$ should be instead set to

$$\Delta S = \sqrt{\eta \vert\Delta\alpha\vert} \frac{S U}{\Vert U\Vert}$$

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions