-
Notifications
You must be signed in to change notification settings - Fork 22
Description
Hi there, a question related to this PR
I'm currently facing an application where I would really like to use adaptive proposals like those defined in this PR in a Metropolis-within-Gibbs setting (i.e. we have a parameter vector x, for each parameter have an adaptive univariate proposal, and in each iteration of the MCMC sampler we update each component of the parameter vector conditional on the others using a Metropolis-Hastings step). The Turing-way to go would seem to use the stuff implemented in AdvancedMH in a Turing composite Gibbs sampler (something roughly like Gibbs(AdaptiveMH(:p1), AdaptiveMH(:p2), ...) where the p1, p2, ... are the parameter vector components)? I think in general this is worthwhile for low-dimensional applications where the gradient of the loglikelihood is really costly or unavailable. I wonder what would be the best way to proceed to allow this? Thanks for any hints!