Skip to content

Commit 379336b

Browse files
authored
Update README.md (#99)
* Update README.md * Update Project.toml
1 parent c7766f5 commit 379336b

File tree

2 files changed

+5
-13
lines changed

2 files changed

+5
-13
lines changed

Project.toml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,7 @@ Random = "1.6"
2626
Random123 = "1.3"
2727
Requires = "1.0"
2828
StatsFuns = "0.9, 1"
29+
SSMProblems = "0.1"
2930
julia = "1.6"
3031

3132
[extras]

README.md

Lines changed: 4 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -6,18 +6,9 @@
66
[![Coverage](https://codecov.io/gh/TuringLang/AdvancedPS.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/TuringLang/AdvancedPS.jl)
77
[![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle)
88

9-
AdvancedPS provides an efficient implementation of common particle based Monte Carlo samplers using the [AbstractMCMC](https://github.com/TuringLang/AbstractMCMC.jl) interface.
9+
AdvancedPS provides an efficient implementation of common particle-based Monte Carlo samplers using the [AbstractMCMC](https://github.com/TuringLang/AbstractMCMC.jl) interface.
1010
The package also relies on [Libtask](https://github.com/TuringLang/Libtask.jl) for task manipulation.
11-
AdvancedPS is part of the [Turing](https://turing.ml/stable/) ecosystem.
12-
13-
### Installation
14-
15-
Inside the Julia REPL
16-
```julia
17-
julia>] add AdvancedPS
18-
```
19-
20-
### Examples
11+
AdvancedPS is part of the [Turing](https://turinglang.org/stable/) ecosystem.
2112

2213
Detailed examples are available in the [documentation](https://turinglang.github.io/AdvancedPS.jl/dev/)
2314

@@ -27,11 +18,11 @@ Detailed examples are available in the [documentation](https://turinglang.github
2718

2819
2. Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. "Particle Markov chain Monte Carlo methods." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, no. 3 (2010): 269-342.
2920

30-
3. Tripuraneni, Nilesh, Shixiang Shane Gu, Hong Ge, and Zoubin Ghahramani. "Particle gibbs for infinite hidden Markov models." In Advances in Neural Information Processing Systems, pp. 2395-2403. 2015.
21+
3. Tripuraneni, Nilesh, Shixiang Shane Gu, Hong Ge, and Zoubin Ghahramani. "Particle Gibbs for infinite hidden Markov models." In Advances in Neural Information Processing Systems, pp. 2395-2403. 2015.
3122

3223
4. Lindsten, Fredrik, Michael I. Jordan, and Thomas B. Schön. "Particle Gibbs with ancestor sampling." The Journal of Machine Learning Research 15, no. 1 (2014): 2145-2184.
3324

34-
5. Pitt, Michael K., and Neil Shephard. "Filtering via simulation: Auxiliary particle filters." Journal of the American statistical association 94, no. 446 (1999): 590-599.
25+
5. Pitt, Michael K., and Neil Shephard. "Filtering via simulation: Auxiliary particle filters." Journal of the American Statistical Association 94, no. 446 (1999): 590-599.
3526

3627
6. Doucet, Arnaud, Nando de Freitas, and Neil Gordon. "Sequential Monte Carlo Methods in Practice."
3728

0 commit comments

Comments
 (0)