|
| 1 | +## Categorical ## |
| 2 | + |
| 3 | +struct TuringDiscreteNonParametric{T<:Real,P<:Real,Ts<:AbstractVector{T},Ps<:AbstractVector{P}} <: DiscreteUnivariateDistribution |
| 4 | + support::Ts |
| 5 | + p::Ps |
| 6 | + |
| 7 | + function TuringDiscreteNonParametric{T, P, Ts, Ps}(vs, ps; check_args=true) where { |
| 8 | + T <: Real, |
| 9 | + P <: Real, |
| 10 | + Ts <: AbstractVector{T}, |
| 11 | + Ps <: AbstractVector{P}, |
| 12 | + } |
| 13 | + check_args || return new{T, P, Ts, Ps}(vs, ps) |
| 14 | + Distributions.@check_args(TuringDiscreteNonParametric, length(vs) == length(ps)) |
| 15 | + Distributions.@check_args(TuringDiscreteNonParametric, isprobvec(ps)) |
| 16 | + Distributions.@check_args(TuringDiscreteNonParametric, allunique(vs)) |
| 17 | + sort_order = sortperm(vs) |
| 18 | + vs = vs[sort_order] |
| 19 | + ps = ps[sort_order] |
| 20 | + new{T, P, Ts, Ps}(vs, ps) |
| 21 | + end |
| 22 | +end |
| 23 | +function TuringDiscreteNonParametric(vs::Ts, ps::Ps; check_args=true) where { |
| 24 | + T <: Real, |
| 25 | + P <: Real, |
| 26 | + Ts <: AbstractVector{T}, |
| 27 | + Ps <: AbstractVector{P}, |
| 28 | +} |
| 29 | + return TuringDiscreteNonParametric{T, P, Ts, Ps}(vs, ps; check_args = check_args) |
| 30 | +end |
| 31 | +function TuringDiscreteNonParametric(vs::Ts, ps::Ps; check_args=true) where { |
| 32 | + T <: Real, |
| 33 | + P <: Real, |
| 34 | + Ts <: AbstractVector{T}, |
| 35 | + Ps <: SubArray, |
| 36 | +} |
| 37 | + _ps = collect(ps) |
| 38 | + _Ps = typeof(ps) |
| 39 | + return TuringDiscreteNonParametric{T, P, Ts, _Ps}(vs, _ps, check_args = check_args) |
| 40 | +end |
| 41 | +function TuringDiscreteNonParametric(vs::Ts, ps::Ps; check_args=true) where { |
| 42 | + T <: Real, |
| 43 | + P <: Real, |
| 44 | + Ts <: AbstractVector{T}, |
| 45 | + Ps <: TrackedVector{P, <:SubArray}, |
| 46 | +} |
| 47 | + _ps = ps[:] |
| 48 | + _Ps = typeof(_ps) |
| 49 | + return TuringDiscreteNonParametric{T, P, Ts, _Ps}(vs, _ps, check_args = check_args) |
| 50 | +end |
| 51 | + |
| 52 | +Base.eltype(::Type{<:TuringDiscreteNonParametric{T}}) where T = T |
| 53 | + |
| 54 | +# Accessors |
| 55 | +Distributions.params(d::TuringDiscreteNonParametric) = (d.support, d.p) |
| 56 | + |
| 57 | +Distributions.support(d::TuringDiscreteNonParametric) = d.support |
| 58 | + |
| 59 | +Distributions.probs(d::TuringDiscreteNonParametric) = d.p |
| 60 | + |
| 61 | +Base.isapprox(c1::D, c2::D) where D <: TuringDiscreteNonParametric = |
| 62 | + (support(c1) ≈ support(c2) || all(support(c1) .≈ support(c2))) && |
| 63 | + (probs(c1) ≈ probs(c2) || all(probs(c1) .≈ probs(c2))) |
| 64 | + |
| 65 | +function Distributions.rand(rng::AbstractRNG, d::TuringDiscreteNonParametric{T,P}) where {T,P} |
| 66 | + x = support(d) |
| 67 | + p = probs(d) |
| 68 | + n = length(p) |
| 69 | + draw = rand(rng, P) |
| 70 | + cp = zero(P) |
| 71 | + i = 0 |
| 72 | + while cp < draw && i < n |
| 73 | + cp += p[i +=1] |
| 74 | + end |
| 75 | + x[max(i,1)] |
| 76 | +end |
| 77 | + |
| 78 | +Distributions.rand(d::TuringDiscreteNonParametric) = rand(GLOBAL_RNG, d) |
| 79 | + |
| 80 | +Distributions.sampler(d::TuringDiscreteNonParametric) = |
| 81 | + DiscreteNonParametricSampler(support(d), probs(d)) |
| 82 | + |
| 83 | +Distributions.get_evalsamples(d::TuringDiscreteNonParametric, ::Float64) = support(d) |
| 84 | + |
| 85 | +Distributions.pdf(d::TuringDiscreteNonParametric) = copy(probs(d)) |
| 86 | + |
| 87 | +# Helper functions for pdf and cdf required to fix ambiguous method |
| 88 | +# error involving [pc]df(::DisceteUnivariateDistribution, ::Int) |
| 89 | +function _pdf(d::TuringDiscreteNonParametric{T,P}, x::T) where {T,P} |
| 90 | + idx_range = searchsorted(support(d), x) |
| 91 | + if length(idx_range) > 0 |
| 92 | + return probs(d)[first(idx_range)] |
| 93 | + else |
| 94 | + return zero(P) |
| 95 | + end |
| 96 | +end |
| 97 | +Distributions.pdf(d::TuringDiscreteNonParametric{T}, x::Int) where T = _pdf(d, convert(T, x)) |
| 98 | +Distributions.pdf(d::TuringDiscreteNonParametric{T}, x::Real) where T = _pdf(d, convert(T, x)) |
| 99 | + |
| 100 | +function _cdf(d::TuringDiscreteNonParametric{T,P}, x::T) where {T,P} |
| 101 | + x > maximum(d) && return 1.0 |
| 102 | + s = zero(P) |
| 103 | + ps = probs(d) |
| 104 | + stop_idx = searchsortedlast(support(d), x) |
| 105 | + for i in 1:stop_idx |
| 106 | + s += ps[i] |
| 107 | + end |
| 108 | + return s |
| 109 | +end |
| 110 | +Distributions.cdf(d::TuringDiscreteNonParametric{T}, x::Integer) where T = _cdf(d, convert(T, x)) |
| 111 | +Distributions.cdf(d::TuringDiscreteNonParametric{T}, x::Real) where T = _cdf(d, convert(T, x)) |
| 112 | + |
| 113 | +function _ccdf(d::TuringDiscreteNonParametric{T,P}, x::T) where {T,P} |
| 114 | + x < minimum(d) && return 1.0 |
| 115 | + s = zero(P) |
| 116 | + ps = probs(d) |
| 117 | + stop_idx = searchsortedlast(support(d), x) |
| 118 | + for i in (stop_idx+1):length(ps) |
| 119 | + s += ps[i] |
| 120 | + end |
| 121 | + return s |
| 122 | +end |
| 123 | +Distributions.ccdf(d::TuringDiscreteNonParametric{T}, x::Integer) where T = _ccdf(d, convert(T, x)) |
| 124 | +Distributions.ccdf(d::TuringDiscreteNonParametric{T}, x::Real) where T = _ccdf(d, convert(T, x)) |
| 125 | + |
| 126 | +function Distributions.quantile(d::TuringDiscreteNonParametric, q::Real) |
| 127 | + 0 <= q <= 1 || throw(DomainError()) |
| 128 | + x = support(d) |
| 129 | + p = probs(d) |
| 130 | + k = length(x) |
| 131 | + i = 1 |
| 132 | + cp = p[1] |
| 133 | + while cp < q && i < k #Note: is i < k necessary? |
| 134 | + i += 1 |
| 135 | + @inbounds cp += p[i] |
| 136 | + end |
| 137 | + x[i] |
| 138 | +end |
| 139 | + |
| 140 | +Base.minimum(d::TuringDiscreteNonParametric) = first(support(d)) |
| 141 | +Base.maximum(d::TuringDiscreteNonParametric) = last(support(d)) |
| 142 | +Distributions.insupport(d::TuringDiscreteNonParametric, x::Real) = |
| 143 | + length(searchsorted(support(d), x)) > 0 |
| 144 | + |
| 145 | +Distributions.mean(d::TuringDiscreteNonParametric) = dot(probs(d), support(d)) |
| 146 | + |
| 147 | +function Distributions.var(d::TuringDiscreteNonParametric{T}) where T |
| 148 | + m = mean(d) |
| 149 | + x = support(d) |
| 150 | + p = probs(d) |
| 151 | + k = length(x) |
| 152 | + σ² = zero(T) |
| 153 | + for i in 1:k |
| 154 | + @inbounds σ² += abs2(x[i] - m) * p[i] |
| 155 | + end |
| 156 | + σ² |
| 157 | +end |
| 158 | + |
| 159 | +Distributions.mode(d::TuringDiscreteNonParametric) = support(d)[argmax(probs(d))] |
| 160 | +function Distributions.modes(d::TuringDiscreteNonParametric{T,P}) where {T,P} |
| 161 | + x = support(d) |
| 162 | + p = probs(d) |
| 163 | + k = length(x) |
| 164 | + mds = T[] |
| 165 | + max_p = zero(P) |
| 166 | + @inbounds for i in 1:k |
| 167 | + pi = p[i] |
| 168 | + xi = x[i] |
| 169 | + if pi > max_p |
| 170 | + max_p = pi |
| 171 | + mds = [xi] |
| 172 | + elseif pi == max_p |
| 173 | + push!(mds, xi) |
| 174 | + end |
| 175 | + end |
| 176 | + mds |
| 177 | +end |
| 178 | + |
| 179 | +function Distributions.Categorical(p::TrackedVector; check_args = true) |
| 180 | + return TuringDiscreteNonParametric(1:length(p), p, check_args = check_args) |
| 181 | +end |
1 | 182 | ## MvNormal ##
|
2 | 183 |
|
3 | 184 | """
|
|
0 commit comments