|
1 |
| -## Categorical ## |
2 |
| - |
3 |
| -struct TuringDiscreteNonParametric{T<:Real,P<:Real,Ts<:AbstractVector{T},Ps<:AbstractVector{P}} <: DiscreteUnivariateDistribution |
4 |
| - support::Ts |
5 |
| - p::Ps |
6 |
| - |
7 |
| - function TuringDiscreteNonParametric{T, P, Ts, Ps}(vs, ps; check_args=true) where { |
8 |
| - T <: Real, |
9 |
| - P <: Real, |
10 |
| - Ts <: AbstractVector{T}, |
11 |
| - Ps <: AbstractVector{P}, |
12 |
| - } |
13 |
| - check_args || return new{T, P, Ts, Ps}(vs, ps) |
14 |
| - Distributions.@check_args(TuringDiscreteNonParametric, length(vs) == length(ps)) |
15 |
| - Distributions.@check_args(TuringDiscreteNonParametric, isprobvec(ps)) |
16 |
| - Distributions.@check_args(TuringDiscreteNonParametric, allunique(vs)) |
17 |
| - sort_order = sortperm(vs) |
18 |
| - vs = vs[sort_order] |
19 |
| - ps = ps[sort_order] |
20 |
| - new{T, P, Ts, Ps}(vs, ps) |
21 |
| - end |
22 |
| -end |
23 |
| -function TuringDiscreteNonParametric(vs::Ts, ps::Ps; check_args=true) where { |
24 |
| - T <: Real, |
25 |
| - P <: Real, |
26 |
| - Ts <: AbstractVector{T}, |
27 |
| - Ps <: AbstractVector{P}, |
28 |
| -} |
29 |
| - return TuringDiscreteNonParametric{T, P, Ts, Ps}(vs, ps; check_args = check_args) |
30 |
| -end |
31 |
| -function TuringDiscreteNonParametric(vs::Ts, ps::Ps; check_args=true) where { |
32 |
| - T <: Real, |
33 |
| - P <: Real, |
34 |
| - Ts <: AbstractVector{T}, |
35 |
| - Ps <: SubArray, |
36 |
| -} |
37 |
| - _ps = collect(ps) |
38 |
| - _Ps = typeof(ps) |
39 |
| - return TuringDiscreteNonParametric{T, P, Ts, _Ps}(vs, _ps, check_args = check_args) |
40 |
| -end |
41 |
| -function TuringDiscreteNonParametric(vs::Ts, ps::Ps; check_args=true) where { |
42 |
| - T <: Real, |
43 |
| - P <: Real, |
44 |
| - Ts <: AbstractVector{T}, |
45 |
| - Ps <: TrackedVector{P, <:SubArray}, |
46 |
| -} |
47 |
| - _ps = ps[:] |
48 |
| - _Ps = typeof(_ps) |
49 |
| - return TuringDiscreteNonParametric{T, P, Ts, _Ps}(vs, _ps, check_args = check_args) |
50 |
| -end |
51 |
| - |
52 |
| -Base.eltype(::Type{<:TuringDiscreteNonParametric{T}}) where T = T |
53 |
| - |
54 |
| -# Accessors |
55 |
| -Distributions.params(d::TuringDiscreteNonParametric) = (d.support, d.p) |
56 |
| - |
57 |
| -Distributions.support(d::TuringDiscreteNonParametric) = d.support |
58 |
| - |
59 |
| -Distributions.probs(d::TuringDiscreteNonParametric) = d.p |
60 |
| - |
61 |
| -Base.isapprox(c1::D, c2::D) where D <: TuringDiscreteNonParametric = |
62 |
| - (support(c1) ≈ support(c2) || all(support(c1) .≈ support(c2))) && |
63 |
| - (probs(c1) ≈ probs(c2) || all(probs(c1) .≈ probs(c2))) |
64 |
| - |
65 |
| -function Distributions.rand(rng::AbstractRNG, d::TuringDiscreteNonParametric{T,P}) where {T,P} |
66 |
| - x = support(d) |
67 |
| - p = probs(d) |
68 |
| - n = length(p) |
69 |
| - draw = rand(rng, P) |
70 |
| - cp = zero(P) |
71 |
| - i = 0 |
72 |
| - while cp < draw && i < n |
73 |
| - cp += p[i +=1] |
74 |
| - end |
75 |
| - x[max(i,1)] |
76 |
| -end |
77 |
| - |
78 |
| -Distributions.rand(d::TuringDiscreteNonParametric) = rand(GLOBAL_RNG, d) |
79 |
| - |
80 |
| -Distributions.sampler(d::TuringDiscreteNonParametric) = |
81 |
| - DiscreteNonParametricSampler(support(d), probs(d)) |
82 |
| - |
83 |
| -Distributions.get_evalsamples(d::TuringDiscreteNonParametric, ::Float64) = support(d) |
84 |
| - |
85 |
| -Distributions.pdf(d::TuringDiscreteNonParametric) = copy(probs(d)) |
86 |
| - |
87 |
| -# Helper functions for pdf and cdf required to fix ambiguous method |
88 |
| -# error involving [pc]df(::DisceteUnivariateDistribution, ::Int) |
89 |
| -function _pdf(d::TuringDiscreteNonParametric{T,P}, x::T) where {T,P} |
90 |
| - idx_range = searchsorted(support(d), x) |
91 |
| - if length(idx_range) > 0 |
92 |
| - return probs(d)[first(idx_range)] |
93 |
| - else |
94 |
| - return zero(P) |
95 |
| - end |
96 |
| -end |
97 |
| -Distributions.pdf(d::TuringDiscreteNonParametric{T}, x::Int) where T = _pdf(d, convert(T, x)) |
98 |
| -Distributions.pdf(d::TuringDiscreteNonParametric{T}, x::Real) where T = _pdf(d, convert(T, x)) |
99 |
| - |
100 |
| -function _cdf(d::TuringDiscreteNonParametric{T,P}, x::T) where {T,P} |
101 |
| - x > maximum(d) && return 1.0 |
102 |
| - s = zero(P) |
103 |
| - ps = probs(d) |
104 |
| - stop_idx = searchsortedlast(support(d), x) |
105 |
| - for i in 1:stop_idx |
106 |
| - s += ps[i] |
107 |
| - end |
108 |
| - return s |
109 |
| -end |
110 |
| -Distributions.cdf(d::TuringDiscreteNonParametric{T}, x::Integer) where T = _cdf(d, convert(T, x)) |
111 |
| -Distributions.cdf(d::TuringDiscreteNonParametric{T}, x::Real) where T = _cdf(d, convert(T, x)) |
112 |
| - |
113 |
| -function _ccdf(d::TuringDiscreteNonParametric{T,P}, x::T) where {T,P} |
114 |
| - x < minimum(d) && return 1.0 |
115 |
| - s = zero(P) |
116 |
| - ps = probs(d) |
117 |
| - stop_idx = searchsortedlast(support(d), x) |
118 |
| - for i in (stop_idx+1):length(ps) |
119 |
| - s += ps[i] |
120 |
| - end |
121 |
| - return s |
122 |
| -end |
123 |
| -Distributions.ccdf(d::TuringDiscreteNonParametric{T}, x::Integer) where T = _ccdf(d, convert(T, x)) |
124 |
| -Distributions.ccdf(d::TuringDiscreteNonParametric{T}, x::Real) where T = _ccdf(d, convert(T, x)) |
125 |
| - |
126 |
| -function Distributions.quantile(d::TuringDiscreteNonParametric, q::Real) |
127 |
| - 0 <= q <= 1 || throw(DomainError()) |
128 |
| - x = support(d) |
129 |
| - p = probs(d) |
130 |
| - k = length(x) |
131 |
| - i = 1 |
132 |
| - cp = p[1] |
133 |
| - while cp < q && i < k #Note: is i < k necessary? |
134 |
| - i += 1 |
135 |
| - @inbounds cp += p[i] |
136 |
| - end |
137 |
| - x[i] |
138 |
| -end |
139 |
| - |
140 |
| -Base.minimum(d::TuringDiscreteNonParametric) = first(support(d)) |
141 |
| -Base.maximum(d::TuringDiscreteNonParametric) = last(support(d)) |
142 |
| -Distributions.insupport(d::TuringDiscreteNonParametric, x::Real) = |
143 |
| - length(searchsorted(support(d), x)) > 0 |
144 |
| - |
145 |
| -Distributions.mean(d::TuringDiscreteNonParametric) = dot(probs(d), support(d)) |
146 |
| - |
147 |
| -function Distributions.var(d::TuringDiscreteNonParametric{T}) where T |
148 |
| - m = mean(d) |
149 |
| - x = support(d) |
150 |
| - p = probs(d) |
151 |
| - k = length(x) |
152 |
| - σ² = zero(T) |
153 |
| - for i in 1:k |
154 |
| - @inbounds σ² += abs2(x[i] - m) * p[i] |
155 |
| - end |
156 |
| - σ² |
157 |
| -end |
158 |
| - |
159 |
| -Distributions.mode(d::TuringDiscreteNonParametric) = support(d)[argmax(probs(d))] |
160 |
| -function Distributions.modes(d::TuringDiscreteNonParametric{T,P}) where {T,P} |
161 |
| - x = support(d) |
162 |
| - p = probs(d) |
163 |
| - k = length(x) |
164 |
| - mds = T[] |
165 |
| - max_p = zero(P) |
166 |
| - @inbounds for i in 1:k |
167 |
| - pi = p[i] |
168 |
| - xi = x[i] |
169 |
| - if pi > max_p |
170 |
| - max_p = pi |
171 |
| - mds = [xi] |
172 |
| - elseif pi == max_p |
173 |
| - push!(mds, xi) |
174 |
| - end |
175 |
| - end |
176 |
| - mds |
177 |
| -end |
178 |
| - |
179 |
| -function Distributions.Categorical(p::TrackedVector; check_args = true) |
180 |
| - return TuringDiscreteNonParametric(1:length(p), p, check_args = check_args) |
181 |
| -end |
182 |
| - |
183 | 1 | ## Dirichlet ##
|
184 | 2 |
|
185 | 3 | struct TuringDirichlet{T, TV <: AbstractVector} <: ContinuousMultivariateDistribution
|
@@ -241,7 +59,7 @@ function simplex_logpdf(alpha, lmnB, x::AbstractVector)
|
241 | 59 | sum((alpha .- 1) .* log.(x)) - lmnB
|
242 | 60 | end
|
243 | 61 | function simplex_logpdf(alpha, lmnB, x::AbstractMatrix)
|
244 |
| - @views init = vcat(sum((alpha .- 1) .* log.(x[:,1]))) |
| 62 | + @views init = vcat(sum((alpha .- 1) .* log.(x[:,1])) - lmnB) |
245 | 63 | mapreduce(vcat, drop(eachcol(x), 1); init = init) do c
|
246 | 64 | sum((alpha .- 1) .* log.(c)) - lmnB
|
247 | 65 | end
|
|
0 commit comments