|
| 1 | +using Distributions |
| 2 | +import Distributions.logpdf |
| 3 | +using Base.Cartesian |
| 4 | + |
| 5 | + |
| 6 | +export logpdf |
| 7 | +export rand |
| 8 | + |
| 9 | +export For |
| 10 | +struct For{F,T,D,X} |
| 11 | + f :: F |
| 12 | + θ :: T |
| 13 | +end |
| 14 | + |
| 15 | +######################################################### |
| 16 | +# T <: NTuple{N,J} where {J <: Integer} |
| 17 | +######################################################### |
| 18 | + |
| 19 | +For(f, θ::J...) where {J <: Integer} = For(f,θ) |
| 20 | + |
| 21 | +function For(f::F, θ::T) where {F, N, J <: Integer, T <: NTuple{N,J}} |
| 22 | + d = f.(ones(Int, N)...) |
| 23 | + D = typeof(d) |
| 24 | + X = eltype(d) |
| 25 | + For{F, NTuple{N,J}, D, X}(f,θ) |
| 26 | +end |
| 27 | + |
| 28 | +@inline function logpdf(d::For{F,T,D,X1},xs::AbstractArray{X2,N}) where {F, N, J <: Integer, T <: NTuple{N,J}, D, X1, X2 <: X1} |
| 29 | + s = 0.0 |
| 30 | + @inbounds @simd for θ in CartesianIndices(d.θ) |
| 31 | + s += logpdf(d.f(Tuple(θ)...), xs[θ]) |
| 32 | + end |
| 33 | + s |
| 34 | +end |
| 35 | + |
| 36 | +function Base.rand(dist::For) |
| 37 | + map(CartesianIndices(dist.θ)) do I |
| 38 | + (rand ∘ dist.f)(Tuple(I)...) |
| 39 | + end |
| 40 | +end |
| 41 | + |
| 42 | +######################################################### |
| 43 | +# T <: NTuple{N,J} where {J <: AbstractUnitRange} |
| 44 | +######################################################### |
| 45 | + |
| 46 | +For(f, θ::J...) where {J <: AbstractUnitRange} = For(f,θ) |
| 47 | + |
| 48 | +function For(f::F, θ::T) where {F, N, J <: AbstractRange, T <: NTuple{N,J}} |
| 49 | + d = f.(ones(Int, N)...) |
| 50 | + D = typeof(d) |
| 51 | + X = eltype(d) |
| 52 | + For{F, NTuple{N,J}, D, X}(f,θ) |
| 53 | +end |
| 54 | + |
| 55 | + |
| 56 | +@inline function logpdf(d::For{F,T,D,X1},xs::AbstractArray{X2,N}) where {F, N, J <: AbstractRange, T <: NTuple{N,J}, D, X1, X2 <: X1} |
| 57 | + s = 0.0 |
| 58 | + @inbounds @simd for θ in CartesianIndices(d.θ) |
| 59 | + s += logpdf(d.f(Tuple(θ)...), xs[θ]) |
| 60 | + end |
| 61 | + s |
| 62 | +end |
| 63 | + |
| 64 | + |
| 65 | +function Base.rand(dist::For{F,T}) where {F, N, J <: AbstractRange, T <: NTuple{N,J}} |
| 66 | + map(CartesianIndices(dist.θ)) do I |
| 67 | + (rand ∘ dist.f)(Tuple(I)...) |
| 68 | + end |
| 69 | +end |
| 70 | + |
| 71 | +######################################################### |
| 72 | +# T <: Base.Generator |
| 73 | +######################################################### |
| 74 | + |
| 75 | +function For(f::F, θ::T) where {F, T <: Base.Generator} |
| 76 | + d = f(θ.f(θ.iter[1])) |
| 77 | + D = typeof(d) |
| 78 | + X = eltype(d) |
| 79 | + For{F, T, D, X}(f,θ) |
| 80 | +end |
| 81 | + |
| 82 | + |
| 83 | +@inline function logpdf(d :: For{F,T}, x) where {F,T <: Base.Generator} |
| 84 | + s = 0.0 |
| 85 | + for (θj, xj) in zip(d.θ, x) |
| 86 | + s += logpdf(d.f(θj), xj) |
| 87 | + end |
| 88 | + s |
| 89 | +end |
| 90 | + |
| 91 | +@inline function rand(d :: For{F,T,D,X}) where {F,T <: Base.Generator, D, X} |
| 92 | + rand.(Base.Generator(d.θ.f, d.θ.iter)) |
| 93 | +end |
| 94 | + |
| 95 | +######################################################### |
| 96 | + |
| 97 | + |
0 commit comments