|
1 | 1 | module MarginalLogDensitiesExtTests
|
2 | 2 |
|
| 3 | +using Bijectors: Bijectors |
3 | 4 | using DynamicPPL, Distributions, Test
|
4 | 5 | using MarginalLogDensities
|
5 | 6 | using ADTypes: AutoForwardDiff
|
6 | 7 |
|
7 | 8 | @testset "MarginalLogDensities" begin
|
8 |
| - # Simple test case. |
9 |
| - @model function demo() |
10 |
| - x ~ MvNormal(zeros(2), [1, 1]) |
11 |
| - return y ~ Normal(0, 1) |
| 9 | + @testset "Basic usage" begin |
| 10 | + @model function demo() |
| 11 | + x ~ MvNormal(zeros(2), [1, 1]) |
| 12 | + return y ~ Normal(0, 1) |
| 13 | + end |
| 14 | + model = demo() |
| 15 | + vi = VarInfo(model) |
| 16 | + # Marginalize out `x`. |
| 17 | + for vn in [@varname(x), :x] |
| 18 | + for getlogprob in [DynamicPPL.getlogprior, DynamicPPL.getlogjoint] |
| 19 | + marginalized = marginalize( |
| 20 | + model, [vn], vi, getlogprob; hess_adtype=AutoForwardDiff() |
| 21 | + ) |
| 22 | + for y in range(-5, 5; length=100) |
| 23 | + @test marginalized([y]) ≈ logpdf(Normal(0, 1), y) atol = 1e-5 |
| 24 | + end |
| 25 | + end |
| 26 | + end |
12 | 27 | end
|
13 |
| - model = demo() |
14 |
| - # Marginalize out `x`. |
15 | 28 |
|
16 |
| - for vn in [@varname(x), :x] |
17 |
| - for getlogprob in [DynamicPPL.getlogprior, DynamicPPL.getlogjoint] |
18 |
| - marginalized = marginalize( |
19 |
| - model, [vn], getlogprob; hess_adtype=AutoForwardDiff() |
20 |
| - ) |
21 |
| - # Compute the marginal log-density of `y = 0.0`. |
22 |
| - @test marginalized([0.0]) ≈ logpdf(Normal(0, 1), 0.0) atol = 1e-5 |
| 29 | + @testset "Respects linked status of VarInfo" begin |
| 30 | + @model function f() |
| 31 | + x ~ Normal() |
| 32 | + return y ~ Beta(2, 2) |
| 33 | + end |
| 34 | + model = f() |
| 35 | + vi_unlinked = VarInfo(model) |
| 36 | + vi_linked = DynamicPPL.link(vi_unlinked, model) |
| 37 | + |
| 38 | + @testset "unlinked VarInfo" begin |
| 39 | + mx = marginalize(model, [@varname(x)], vi_unlinked) |
| 40 | + for x in range(0.01, 0.99; length=10) |
| 41 | + @test mx([x]) ≈ logpdf(Beta(2, 2), x) |
| 42 | + end |
| 43 | + # generally when marginalising Beta it doesn't go to zero |
| 44 | + my = marginalize(model, [@varname(y)], vi_unlinked) |
| 45 | + diff = my([0.0]) - logpdf(Normal(), 0.0) |
| 46 | + for x in range(-5, 5; length=10) |
| 47 | + @test my([x]) ≈ logpdf(Normal(), x) + diff |
| 48 | + end |
| 49 | + end |
| 50 | + |
| 51 | + @testset "linked VarInfo" begin |
| 52 | + mx = marginalize(model, [@varname(x)], vi_linked) |
| 53 | + binv = Bijectors.inverse(Bijectors.bijector(Beta(2, 2))) |
| 54 | + for y_linked in range(-5, 5; length=10) |
| 55 | + y_unlinked = binv(y_linked) |
| 56 | + @test mx([y_linked]) ≈ logpdf(Beta(2, 2), y_unlinked) |
| 57 | + end |
| 58 | + # generally when marginalising Beta it doesn't go to zero |
| 59 | + my = marginalize(model, [@varname(y)], vi_linked) |
| 60 | + diff = my([0.0]) - logpdf(Normal(), 0.0) |
| 61 | + for x in range(-5, 5; length=10) |
| 62 | + @test my([x]) ≈ logpdf(Normal(), x) + diff |
| 63 | + end |
23 | 64 | end
|
24 | 65 | end
|
25 | 66 | end
|
|
0 commit comments