Skip to content

Commit 57a1537

Browse files
committed
Fix interface so that callers can inspect results
1 parent f17300a commit 57a1537

File tree

1 file changed

+52
-30
lines changed

1 file changed

+52
-30
lines changed

src/test_utils/ad.jl

Lines changed: 52 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -10,13 +10,7 @@ using Random: Random, Xoshiro
1010
using Statistics: median
1111
using Test: @test
1212

13-
export ADResult, run_ad
14-
15-
# This function needed to work around the fact that different backends can
16-
# return different AbstractArrays for the gradient. See
17-
# https://github.com/JuliaDiff/DifferentiationInterface.jl/issues/754 for more
18-
# context.
19-
_to_vec_f64(x::AbstractArray) = x isa Vector{Float64} ? x : collect(Float64, x)
13+
export ADResult, run_ad, ADIncorrectException
2014

2115
"""
2216
REFERENCE_ADTYPE
@@ -27,33 +21,50 @@ it's the default AD backend used in Turing.jl.
2721
const REFERENCE_ADTYPE = AutoForwardDiff()
2822

2923
"""
30-
ADResult
24+
ADIncorrectException{T<:Real}
25+
26+
Exception thrown when an AD backend returns an incorrect value or gradient.
27+
28+
The type parameter `T` is the numeric type of the value and gradient.
29+
"""
30+
struct ADIncorrectException{T<:Real} <: Exception
31+
value_expected::T
32+
value_actual::T
33+
grad_expected::Vector{T}
34+
grad_actual::Vector{T}
35+
end
36+
37+
"""
38+
ADResult{Tparams<:Real,Tresult<:Real}
3139
3240
Data structure to store the results of the AD correctness test.
41+
42+
The type parameter `Tparams` is the numeric type of the parameters passed in;
43+
`Tresult` is the type of the value and the gradient.
3344
"""
34-
struct ADResult
45+
struct ADResult{Tparams<:Real,Tresult<:Real}
3546
"The DynamicPPL model that was tested"
3647
model::Model
3748
"The VarInfo that was used"
3849
varinfo::AbstractVarInfo
3950
"The values at which the model was evaluated"
40-
params::Vector{<:Real}
51+
params::Vector{Tparams}
4152
"The AD backend that was tested"
4253
adtype::AbstractADType
4354
"The absolute tolerance for the value of logp"
44-
value_atol::Real
55+
value_atol::Tresult
4556
"The absolute tolerance for the gradient of logp"
46-
grad_atol::Real
57+
grad_atol::Tresult
4758
"The expected value of logp"
48-
value_expected::Union{Nothing,Float64}
59+
value_expected::Union{Nothing,Tresult}
4960
"The expected gradient of logp"
50-
grad_expected::Union{Nothing,Vector{Float64}}
61+
grad_expected::Union{Nothing,Vector{Tresult}}
5162
"The value of logp (calculated using `adtype`)"
52-
value_actual::Union{Nothing,Real}
63+
value_actual::Union{Nothing,Tresult}
5364
"The gradient of logp (calculated using `adtype`)"
54-
grad_actual::Union{Nothing,Vector{Float64}}
65+
grad_actual::Union{Nothing,Vector{Tresult}}
5566
"If benchmarking was requested, the time taken by the AD backend to calculate the gradient of logp, divided by the time taken to evaluate logp itself"
56-
time_vs_primal::Union{Nothing,Float64}
67+
time_vs_primal::Union{Nothing,Tresult}
5768
end
5869

5970
"""
@@ -72,19 +83,20 @@ end
7283
verbose=true,
7384
)::ADResult
7485
86+
### Description
87+
7588
Test the correctness and/or benchmark the AD backend `adtype` for the model
7689
`model`.
7790
7891
Whether to test and benchmark is controlled by the `test` and `benchmark`
7992
keyword arguments. By default, `test` is `true` and `benchmark` is `false`.
8093
81-
Returns an [`ADResult`](@ref) object, which contains the results of the
82-
test and/or benchmark.
83-
8494
Note that to run AD successfully you will need to import the AD backend itself.
8595
For example, to test with `AutoReverseDiff()` you will need to run `import
8696
ReverseDiff`.
8797
98+
### Arguments
99+
88100
There are two positional arguments, which absolutely must be provided:
89101
90102
1. `model` - The model being tested.
@@ -146,14 +158,23 @@ Everything else is optional, and can be categorised into several groups:
146158
147159
By default, this function prints messages when it runs. To silence it, set
148160
`verbose=false`.
161+
162+
### Returns / Throws
163+
164+
Returns an [`ADResult`](@ref) object, which contains the results of the
165+
test and/or benchmark.
166+
167+
If `test` is `true` and the AD backend returns an incorrect value or gradient, an
168+
`ADIncorrectException` is thrown. If a different error occurs, it will be
169+
thrown as-is.
149170
"""
150171
function run_ad(
151172
model::Model,
152173
adtype::AbstractADType;
153-
test=true,
154-
benchmark=false,
155-
value_atol=1e-6,
156-
grad_atol=1e-6,
174+
test::Bool=true,
175+
benchmark::Bool=false,
176+
value_atol::Real=1e-6,
177+
grad_atol::Real=1e-6,
157178
linked::Bool=true,
158179
varinfo::AbstractVarInfo=VarInfo(model),
159180
params::Union{Nothing,Vector{<:Real}}=nothing,
@@ -167,14 +188,14 @@ function run_ad(
167188
if isnothing(params)
168189
params = varinfo[:]
169190
end
170-
params = map(identity, params)
191+
params = map(identity, params) # Concretise
171192

172193
verbose && @info "Running AD on $(model.f) with $(adtype)\n"
173194
verbose && println(" params : $(params)")
174195
ldf = LogDensityFunction(model, varinfo; adtype=adtype)
175196

176197
value, grad = logdensity_and_gradient(ldf, params)
177-
grad = _to_vec_f64(grad)
198+
grad = collect(grad)
178199
verbose && println(" actual : $((value, grad))")
179200

180201
if test
@@ -186,10 +207,11 @@ function run_ad(
186207
expected_value_and_grad
187208
end
188209
verbose && println(" expected : $((value_true, grad_true))")
189-
grad_true = _to_vec_f64(grad_true)
190-
# Then compare
191-
@test isapprox(value, value_true; atol=value_atol)
192-
@test isapprox(grad, grad_true; atol=grad_atol)
210+
grad_true = collect(grad_true)
211+
212+
exc() = throw(ADIncorrectException(value, value_true, grad, grad_true))
213+
isapprox(value, value_true; atol=value_atol) || exc()
214+
isapprox(grad, grad_true; atol=grad_atol) || exc()
193215
else
194216
value_true = nothing
195217
grad_true = nothing

0 commit comments

Comments
 (0)