3
3
f::F
4
4
args::NamedTuple{argnames,Targs}
5
5
defaults::NamedTuple{defaultnames,Tdefaults}
6
- context::Ctx
6
+ context::Ctx=DefaultContext()
7
7
end
8
8
9
9
A `Model` struct with model evaluation function of type `F`, arguments of names `argnames`
@@ -1079,7 +1079,7 @@ end
1079
1079
Return an array of log joint probabilities evaluated at each sample in an MCMC `chain`.
1080
1080
1081
1081
# Examples
1082
-
1082
+
1083
1083
```jldoctest
1084
1084
julia> using MCMCChains, Distributions
1085
1085
@@ -1095,7 +1095,7 @@ julia> # construct a chain of samples using MCMCChains
1095
1095
chain = Chains(rand(10, 2, 3), [:s, :m]);
1096
1096
1097
1097
julia> logjoint(demo_model([1., 2.]), chain);
1098
- ```
1098
+ ```
1099
1099
"""
1100
1100
function logjoint (model:: Model , chain:: AbstractMCMC.AbstractChains )
1101
1101
var_info = VarInfo (model) # extract variables info from the model
@@ -1126,7 +1126,7 @@ end
1126
1126
Return an array of log prior probabilities evaluated at each sample in an MCMC `chain`.
1127
1127
1128
1128
# Examples
1129
-
1129
+
1130
1130
```jldoctest
1131
1131
julia> using MCMCChains, Distributions
1132
1132
@@ -1142,7 +1142,7 @@ julia> # construct a chain of samples using MCMCChains
1142
1142
chain = Chains(rand(10, 2, 3), [:s, :m]);
1143
1143
1144
1144
julia> logprior(demo_model([1., 2.]), chain);
1145
- ```
1145
+ ```
1146
1146
"""
1147
1147
function logprior (model:: Model , chain:: AbstractMCMC.AbstractChains )
1148
1148
var_info = VarInfo (model) # extract variables info from the model
@@ -1173,7 +1173,7 @@ end
1173
1173
Return an array of log likelihoods evaluated at each sample in an MCMC `chain`.
1174
1174
1175
1175
# Examples
1176
-
1176
+
1177
1177
```jldoctest
1178
1178
julia> using MCMCChains, Distributions
1179
1179
@@ -1189,7 +1189,7 @@ julia> # construct a chain of samples using MCMCChains
1189
1189
chain = Chains(rand(10, 2, 3), [:s, :m]);
1190
1190
1191
1191
julia> loglikelihood(demo_model([1., 2.]), chain);
1192
- ```
1192
+ ```
1193
1193
"""
1194
1194
function Distributions. loglikelihood (model:: Model , chain:: AbstractMCMC.AbstractChains )
1195
1195
var_info = VarInfo (model) # extract variables info from the model
0 commit comments