Skip to content

Commit 7a14915

Browse files
Apply suggestions from code review
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
1 parent d2226b4 commit 7a14915

File tree

2 files changed

+10
-8
lines changed

2 files changed

+10
-8
lines changed

docs/make.jl

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,9 @@ using DocumenterMermaid
1313
using MCMCChains
1414

1515
# Doctest setup
16-
DocMeta.setdocmeta!(DynamicPPL, :DocTestSetup, :(using DynamicPPL, MCMCChains); recursive=true)
16+
DocMeta.setdocmeta!(
17+
DynamicPPL, :DocTestSetup, :(using DynamicPPL, MCMCChains); recursive=true
18+
)
1719

1820
makedocs(;
1921
sitename="DynamicPPL",

docs/src/api.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -114,21 +114,21 @@ predict
114114

115115
The `predict` function has two main methods:
116116

117-
1. For `AbstractVector{<:AbstractVarInfo}` - useful when you have a collection of `VarInfo` objects representing posterior samples.
118-
2. For `MCMCChains.Chains` - useful when you have posterior samples in the form of a `Chains` object from MCMCChains.jl.
117+
1. For `AbstractVector{<:AbstractVarInfo}` - useful when you have a collection of `VarInfo` objects representing posterior samples.
118+
2. For `MCMCChains.Chains` - useful when you have posterior samples in the form of a `Chains` object from MCMCChains.jl.
119119

120120
### Basic Usage
121121

122122
The typical workflow for posterior prediction involves:
123123

124-
1. Fitting a model to observed data to obtain posterior samples
125-
2. Creating a new model instance with some variables marked as missing (unobserved)
126-
3. Using `predict` to generate samples for these missing variables based on the posterior parameter samples
124+
1. Fitting a model to observed data to obtain posterior samples
125+
2. Creating a new model instance with some variables marked as missing (unobserved)
126+
3. Using `predict` to generate samples for these missing variables based on the posterior parameter samples
127127

128128
When using `predict` with `MCMCChains.Chains`, you can control which variables are included in the output with the `include_all` parameter:
129129

130-
- `include_all=false` (default): Include only newly predicted variables
131-
- `include_all=true`: Include both parameters from the original chain and predicted variables
130+
- `include_all=false` (default): Include only newly predicted variables
131+
- `include_all=true`: Include both parameters from the original chain and predicted variables
132132

133133
## Models within models
134134

0 commit comments

Comments
 (0)