@@ -566,40 +566,6 @@ const GDEMO_DEFAULT = DynamicPPL.TestUtils.demo_assume_observe_literal()
566
566
end
567
567
end
568
568
end
569
-
570
- @testset " with AbstractVector{<:AbstractVarInfo}" begin
571
- @model function linear_reg (x, y, σ= 0.1 )
572
- β ~ Normal (1 , 1 )
573
- for i in eachindex (y)
574
- y[i] ~ Normal (β * x[i], σ)
575
- end
576
- end
577
-
578
- ground_truth_β = 2.0
579
- # the data will be ignored, as we are generating samples from the prior
580
- xs_train = 1 : 0.1 : 10
581
- ys_train = ground_truth_β .* xs_train + rand (Normal (0 , 0.1 ), length (xs_train))
582
- m_lin_reg = linear_reg (xs_train, ys_train)
583
- chain = [VarInfo (m_lin_reg) for _ in 1 : 10000 ]
584
-
585
- # chain is generated from the prior
586
- @test mean ([chain[i][@varname (β)] for i in eachindex (chain)]) ≈ 1.0 atol = 0.1
587
-
588
- xs_test = [10 + 0.1 , 10 + 2 * 0.1 ]
589
- m_lin_reg_test = linear_reg (xs_test, fill (missing , length (xs_test)))
590
- predicted_vis = DynamicPPL. predict (m_lin_reg_test, chain)
591
-
592
- @test size (predicted_vis) == size (chain)
593
- @test Set (keys (predicted_vis[1 ])) ==
594
- Set ([@varname (β), @varname (y[1 ]), @varname (y[2 ])])
595
- # because β samples are from the prior, the std will be larger
596
- @test mean ([
597
- predicted_vis[i][@varname (y[1 ])] for i in eachindex (predicted_vis)
598
- ]) ≈ 1.0 * xs_test[1 ] rtol = 0.1
599
- @test mean ([
600
- predicted_vis[i][@varname (y[2 ])] for i in eachindex (predicted_vis)
601
- ]) ≈ 1.0 * xs_test[2 ] rtol = 0.1
602
- end
603
569
end
604
570
605
571
@testset " ProductNamedTupleDistribution sampling" begin
0 commit comments