Skip to content

Commit eb19664

Browse files
committed
updating docs
1 parent 4e6bfbe commit eb19664

File tree

3 files changed

+10
-12
lines changed

3 files changed

+10
-12
lines changed

docs/make.jl

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,18 @@
11
using NormalizingFlows
22
using Documenter
33

4+
using Random
5+
using Distributions
6+
47
DocMeta.setdocmeta!(
58
NormalizingFlows, :DocTestSetup, :(using NormalizingFlows); recursive=true
69
)
710

811
makedocs(;
912
modules=[NormalizingFlows],
10-
repo="https://github.com/TuringLang/NormalizingFlows.jl/blob/{commit}{path}#{line}",
1113
sitename="NormalizingFlows.jl",
12-
format=Documenter.HTML(),
14+
repo="https://github.com/TuringLang/NormalizingFlows.jl/blob/{commit}{path}#{line}",
15+
format=Documenter.HTML(; prettyurls=get(ENV, "CI", nothing) == "true"),
1316
pages=[
1417
"Home" => "index.md",
1518
"API" => "api.md",

docs/src/index.md

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ CurrentModule = NormalizingFlows
44

55
# NormalizingFlows.jl
66

7-
Documentation for [NormalizingFlows](https://github.com/TuringLang/NormalizingFlows.jl).
7+
Documentation for [NormalizingFlows.jl](https://github.com/TuringLang/NormalizingFlows.jl).
88

99

1010
The purpose of this package is to provide a simple and flexible interface for
@@ -15,8 +15,6 @@ construct (e.g., define customized flow layers) and combine various components
1515
for variational approximation of general target distributions,
1616
*without being tied to specific probabilistic programming frameworks or applications*.
1717

18-
See the [documentation](https://turinglang.org/NormalizingFlows.jl/dev/) for more.
19-
2018
## Installation
2119
To install the package, run the following command in the Julia REPL:
2220
```
@@ -67,7 +65,7 @@ optimization problems:
6765
\text{Reverse KL:}\quad
6866
&\argmin _{\theta} \mathbb{E}_{q_{\theta}}\left[\log q_{\theta}(Z)-\log p(Z)\right] \\
6967
&= \argmin _{\theta} \mathbb{E}_{q_0}\left[\log \frac{q_\theta(T_N\circ \cdots \circ T_1(Z_0))}{p(T_N\circ \cdots \circ T_1(Z_0))}\right] \\
70-
&= \argmax _{\theta} \mathbb{E}_{q_0}\left[ \log p\left(T_N \circ \cdots \circ T_1(Z_0)\right)-\log q_0(X)+\sum_{n=1}^N \log J_n\left(F_n \circ \cdots \circ F_1(X)\right)\right]
68+
&= \argmax _{\theta} \mathbb{E}_{q_0}\left[ \log p\left(T_N \circ \cdots \circ T_1(Z_0)\right)-\log q_0(X)+\sum_{n=1}^N \log J_n\left(T_n \circ \cdots \circ T_1(X)\right)\right]
7169
\end{aligned}
7270
```
7371
and
@@ -82,4 +80,4 @@ Both problems can be solved via standard stochastic optimization algorithms,
8280
such as stochastic gradient descent (SGD) and its variants.
8381

8482

85-
83+
For a detailed introduction of normalizing flows, please refer to

src/flows/realnvp.jl

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -186,12 +186,9 @@ end
186186
187187
Default constructor of RealNVP with 10 layers,
188188
each coupling function has 2 hidden layers with 32 units.
189-
Following the general architecture as in [^ASD2020] (see Apdx. E).
189+
Following the general architecture as in the Apdx. E of [^ASD2020].
190190
191-
192-
[^ASD2020]: Agrawal, A., & Sheldon, D., & Domke, J. (2020).
193-
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization.
194-
In *NeurIPS*.
191+
[^ASD2020]: Agrawal, A., & Sheldon, D., & Domke, J. (2020). Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization. In *NeurIPS*.
195192
"""
196193
realnvp(q0; paramtype::Type{T} = Float64) where {T<:AbstractFloat} = realnvp(
197194
q0, [32, 32], 10; paramtype=paramtype

0 commit comments

Comments
 (0)