@@ -59,7 +59,7 @@ function LogDensityProblems.dimension(model::MultiModel)
5959end
6060
6161@testset " multivariate samplers" begin
62- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
62+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
6363 @testset for sampler in [
6464 # Vector-valued windows
6565 RandPermGibbs (Slice .(fill (1 , LogDensityProblems. dimension (model)))),
7474 HitAndRun (SliceSteppingOut (1 )),
7575 HitAndRun (SliceDoublingOut (1 )),
7676
77- # Latent slice sampling
77+ # Multivariate slice samplers
7878 LatentSlice (5 ),
79-
80- # Gibbsian polar slice sampling
8179 GibbsPolarSlice (100 ),
8280 ]
8381 @testset " initial_params" begin
84- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
82+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
8583 θ, y = MCMCTesting. sample_joint (Random. default_rng (), model)
8684 model′ = AbstractMCMC. LogDensityModel (@set model. y = y)
8785
9290
9391 @testset " initial_sample" begin
9492 rng = StableRNG (1 )
95- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
93+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
9694 θ0 = SliceSampling. initial_sample (rng, model)
9795
9896 rng = StableRNG (1 )
10199 end
102100
103101 @testset " determinism" begin
104- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
102+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
105103 θ, y = MCMCTesting. sample_joint (Random. default_rng (), model)
106104 model′ = AbstractMCMC. LogDensityModel (@set model. y = y)
107105
140138 n_mcmc_thin = 10
141139 test = ExactRankTest (n_samples, n_mcmc_steps, n_mcmc_thin)
142140
143- model = MultiModel (1 .0 , 1 .0 , [0.0 ])
141+ model = MultiModel (3 .0 , 3 .0 , [0.0 ])
144142 subject = TestSubject (model, sampler)
145143 @test seqmcmctest (test, subject, 0.001 , n_pvalue_samples; show_progress= false )
146144 end
0 commit comments