|
| 1 | + |
| 2 | +""" |
| 3 | + StereographicSlice(; max_proposals) |
| 4 | +
|
| 5 | +Stereographic slice sampling algorithm by Bell, Latuszynski, and Roberts[^BLR]. |
| 6 | +
|
| 7 | +# Keyword Arguments |
| 8 | +- `max_proposals::Int`: Maximum number of proposals allowed until throwing an error (default: `$(DEFAULT_MAX_PROPOSALS)`). |
| 9 | +""" |
| 10 | +@kwdef struct StereographicSlice{RType <: Real} <: AbstractMultivariateSliceSampling |
| 11 | + max_proposals :: Int = DEFAULT_MAX_PROPOSALS |
| 12 | +end |
| 13 | + |
| 14 | +struct StereographicSliceState{T<:Transition} |
| 15 | + "Current [`Transition`](@ref)." |
| 16 | + transition::T |
| 17 | +end |
| 18 | + |
| 19 | +function rand_uniform_sphere_orthogonal_subspace( |
| 20 | + rng::Random.AbstractRNG, subspace_vector::AbstractVector |
| 21 | +) |
| 22 | + z = subspace_vector |
| 23 | + d = length(subspace_vector) |
| 24 | + v = randn(rng, d) |
| 25 | + v_proj = dot(z, v)/sum(abs2, z)*z |
| 26 | + v_orth = v - v_proj |
| 27 | + v_orth / norm(v_orth) |
| 28 | +end |
| 29 | + |
| 30 | +function stereographic_projection(z::AbstractVector) |
| 31 | + d = length(z) - 1 |
| 32 | + return z[1:d] ./ (1 - z[d+1]) |
| 33 | +end |
| 34 | + |
| 35 | +function stereographic_inverse_projection(x::AbstractVector) |
| 36 | + d = length(x) |
| 37 | + z = zeros(d + 1) |
| 38 | + x_norm2 = sum(abs2, x) |
| 39 | + z[1:d] = 2*x / (x_norm2 + 1) |
| 40 | + z[d+1] = (x_norm2 - 1)/(x_norm2 + 1) |
| 41 | + z |
| 42 | +end |
| 43 | + |
| 44 | +function AbstractMCMC.step( |
| 45 | + rng::Random.AbstractRNG, |
| 46 | + model::AbstractMCMC.LogDensityModel, |
| 47 | + sampler::StereographicSlice; |
| 48 | + initial_params=nothing, |
| 49 | + kwargs..., |
| 50 | +) |
| 51 | + logdensitymodel = model.logdensity |
| 52 | + x = initial_params === nothing ? initial_sample(rng, logdensitymodel) : initial_params |
| 53 | + lp = LogDensityProblems.logdensity(logdensitymodel, x) |
| 54 | + t = Transition(x, lp, NamedTuple()) |
| 55 | + return t, t |
| 56 | +end |
| 57 | + |
| 58 | +function logdensity_sphere(ℓπ::Real, x::AbstractVector) |
| 59 | + d = length(x) |
| 60 | + return ℓπ + d*log(1 + sum(abs2, x)) |
| 61 | +end |
| 62 | + |
| 63 | +function AbstractMCMC.step( |
| 64 | + rng::Random.AbstractRNG, |
| 65 | + model::AbstractMCMC.LogDensityModel, |
| 66 | + sampler::StereographicSlice, |
| 67 | + state::Transition; |
| 68 | + kwargs..., |
| 69 | +) |
| 70 | + logdensitymodel = model.logdensity |
| 71 | + max_proposals = sampler.max_proposals |
| 72 | + |
| 73 | + ℓp = state.lp |
| 74 | + x = state.params |
| 75 | + z = stereographic_inverse_projection(x) |
| 76 | + v = rand_uniform_sphere_orthogonal_subspace(rng, z) |
| 77 | + ℓp_sphere = logdensity_sphere(ℓp, x) |
| 78 | + ℓw = ℓp_sphere - Random.randexp(rng, eltype(x)) |
| 79 | + |
| 80 | + θ = rand(rng, Uniform(0, 2π)) |
| 81 | + θ_max = θ |
| 82 | + θ_min = θ - 2π |
| 83 | + |
| 84 | + props = 0 |
| 85 | + while true |
| 86 | + props += 1 |
| 87 | + |
| 88 | + x_prop = stereographic_projection(z*cos(θ) + v*sin(θ)) |
| 89 | + ℓp_prop = LogDensityProblems.logdensity(logdensitymodel, x_prop) |
| 90 | + ℓp_sphere_prop = logdensity_sphere(ℓp_prop, x_prop) |
| 91 | + |
| 92 | + if ℓw < ℓp_sphere_prop |
| 93 | + ℓp = ℓp_prop |
| 94 | + x = x_prop |
| 95 | + break |
| 96 | + end |
| 97 | + |
| 98 | + if props > max_proposals |
| 99 | + exceeded_max_prop(max_proposals) |
| 100 | + end |
| 101 | + |
| 102 | + if θ < 0 |
| 103 | + θ_min = θ |
| 104 | + else |
| 105 | + θ_max = θ |
| 106 | + end |
| 107 | + |
| 108 | + θ = rand(rng, Uniform(θ_min, θ_max)) |
| 109 | + end |
| 110 | + t = Transition(x, ℓp, (num_proposals=props,)) |
| 111 | + return t, t |
| 112 | +end |
0 commit comments