@@ -174,7 +174,7 @@ function AbstractMCMC.sample_init!(
174
174
model (rng, spl. state. vi, spl)
175
175
elseif islinked (spl. state. vi, spl) && spl. selector. tag != :default
176
176
invlink! (spl. state. vi, spl)
177
- model (rng, spl. state. vi, spl)
177
+ model (rng, spl. state. vi, spl)
178
178
end
179
179
end
180
180
@@ -289,7 +289,7 @@ No-U-Turn Sampler (NUTS) sampler.
289
289
Usage:
290
290
291
291
```julia
292
- NUTS() # Use default NUTS configuration.
292
+ NUTS() # Use default NUTS configuration.
293
293
NUTS(1000, 0.65) # Use 1000 adaption steps, and target accept ratio 0.65.
294
294
```
295
295
@@ -299,7 +299,7 @@ Arguments:
299
299
- `δ::Float64` : Target acceptance rate for dual averaging.
300
300
- `max_depth::Int` : Maximum doubling tree depth.
301
301
- `Δ_max::Float64` : Maximum divergence during doubling tree.
302
- - `ϵ ::Float64` : Inital step size; 0 means automatically searching using a heuristic procedure.
302
+ - `init_ϵ ::Float64` : Inital step size; 0 means automatically searching using a heuristic procedure.
303
303
304
304
"""
305
305
mutable struct NUTS{AD, space, metricT <: AHMC.AbstractMetric } <: AdaptiveHamiltonian{AD}
@@ -434,8 +434,8 @@ function AbstractMCMC.step!(
434
434
435
435
# Adaptation
436
436
if spl. alg isa AdaptiveHamiltonian
437
- spl. state. h, spl. state. traj, isadapted =
438
- AHMC. adapt! (spl. state. h, spl. state. traj, spl. state. adaptor,
437
+ spl. state. h, spl. state. traj, isadapted =
438
+ AHMC. adapt! (spl. state. h, spl. state. traj, spl. state. adaptor,
439
439
spl. state. i, spl. alg. n_adapts, t. z. θ, t. stat. acceptance_rate)
440
440
end
441
441
0 commit comments