@@ -119,16 +119,10 @@ end
119
119
Distributions. mean (p:: ESSPrior ) = p. μ
120
120
121
121
# Evaluate log-likelihood of proposals
122
- const ESSLogLikelihood{M<: Model ,S<: Sampler{<:ESS} ,V<: AbstractVarInfo } = Turing. LogDensityFunction{
123
- V,M,<: DynamicPPL.SamplingContext{<:S}
124
- }
125
-
126
- function (ℓ:: ESSLogLikelihood )(f:: AbstractVector )
127
- sampler = DynamicPPL. getsampler (ℓ)
128
- varinfo = DynamicPPL. unflatten (ℓ. varinfo, f)
129
- varinfo = last (DynamicPPL. evaluate!! (ℓ. model, varinfo, sampler))
130
- return getlogp (varinfo)
131
- end
122
+ const ESSLogLikelihood{M<: Model ,S<: Sampler{<:ESS} ,V<: AbstractVarInfo } =
123
+ Turing. LogDensityFunction{M,V,<: DynamicPPL.SamplingContext{<:S} ,AD} where {AD}
124
+
125
+ (ℓ:: ESSLogLikelihood )(f:: AbstractVector ) = LogDensityProblems. logdensity (ℓ, f)
132
126
133
127
function DynamicPPL. tilde_assume (
134
128
rng:: Random.AbstractRNG , :: DefaultContext , :: Sampler{<:ESS} , right, vn, vi
@@ -138,8 +132,6 @@ function DynamicPPL.tilde_assume(
138
132
)
139
133
end
140
134
141
- function DynamicPPL. tilde_observe (
142
- ctx:: DefaultContext , sampler:: Sampler{<:ESS} , right, left, vi
143
- )
135
+ function DynamicPPL. tilde_observe (ctx:: DefaultContext , :: Sampler{<:ESS} , right, left, vi)
144
136
return DynamicPPL. tilde_observe (ctx, SampleFromPrior (), right, left, vi)
145
137
end
0 commit comments