@@ -61,7 +61,7 @@ function DynamicPPL.initialstep(
61
61
# Transform the samples to unconstrained space and compute the joint log probability.
62
62
if ! DynamicPPL. islinked (vi)
63
63
vi = DynamicPPL. link!! (vi, model)
64
- vi = last (DynamicPPL. evaluate!! (model, vi, DynamicPPL . SamplingContext (rng, spl) ))
64
+ vi = last (DynamicPPL. evaluate!! (model, vi))
65
65
end
66
66
67
67
# Compute initial sample and state.
@@ -100,7 +100,7 @@ function AbstractMCMC.step(
100
100
101
101
# Save new variables and recompute log density.
102
102
vi = DynamicPPL. unflatten (vi, θ)
103
- vi = last (DynamicPPL. evaluate!! (model, vi, DynamicPPL . SamplingContext (rng, spl) ))
103
+ vi = last (DynamicPPL. evaluate!! (model, vi))
104
104
105
105
# Compute next sample and state.
106
106
sample = Transition (model, vi)
@@ -224,7 +224,7 @@ function DynamicPPL.initialstep(
224
224
# Transform the samples to unconstrained space and compute the joint log probability.
225
225
if ! DynamicPPL. islinked (vi)
226
226
vi = DynamicPPL. link!! (vi, model)
227
- vi = last (DynamicPPL. evaluate!! (model, vi, DynamicPPL . SamplingContext (rng, spl) ))
227
+ vi = last (DynamicPPL. evaluate!! (model, vi))
228
228
end
229
229
230
230
# Create first sample and state.
@@ -254,7 +254,7 @@ function AbstractMCMC.step(
254
254
255
255
# Save new variables and recompute log density.
256
256
vi = DynamicPPL. unflatten (vi, θ)
257
- vi = last (DynamicPPL. evaluate!! (model, vi, DynamicPPL . SamplingContext (rng, spl) ))
257
+ vi = last (DynamicPPL. evaluate!! (model, vi))
258
258
259
259
# Compute next sample and state.
260
260
sample = SGLDTransition (model, vi, stepsize)
0 commit comments