@@ -1301,7 +1301,7 @@ Here we are using the shortcut `point=True` to layer a point and line chart.
1301
1301
accuracy_vs_k = alt.Chart(accuracies_grid).mark_line(point=True).encode(
1302
1302
x=alt.X("n_neighbors").title("Neighbors"),
1303
1303
y=alt.Y("mean_test_score")
1304
- .scale(domain=(0.85, 0.90) )
1304
+ .scale(zero=False )
1305
1305
.title("Accuracy estimate")
1306
1306
)
1307
1307
@@ -1388,7 +1388,7 @@ large_accuracies_grid = pd.DataFrame(large_cancer_tune_grid.cv_results_)
1388
1388
large_accuracy_vs_k = alt.Chart(large_accuracies_grid).mark_line(point=True).encode(
1389
1389
x=alt.X("param_kneighborsclassifier__n_neighbors").title("Neighbors"),
1390
1390
y=alt.Y("mean_test_score")
1391
- .scale(domain=(0.60, 0.90) )
1391
+ .scale(zero=False )
1392
1392
.title("Accuracy estimate")
1393
1393
)
1394
1394
@@ -1836,7 +1836,7 @@ plt_irrelevant_accuracies = (
1836
1836
y=alt.Y(
1837
1837
"accs",
1838
1838
title="Model Accuracy Estimate",
1839
- scale=alt.Scale(domain=(0.80, 0.95) ),
1839
+ scale=alt.Scale(zero=False ),
1840
1840
),
1841
1841
)
1842
1842
)
@@ -1899,7 +1899,7 @@ plt_irrelevant_nghbrs_fixed = (
1899
1899
x=alt.X("ks", title="Number of Irrelevant Predictors"),
1900
1900
y=alt.Y(
1901
1901
"Accuracy",
1902
- scale=alt.Scale(domain=(0.75, 0.95) ),
1902
+ scale=alt.Scale(zero=False ),
1903
1903
),
1904
1904
color=alt.Color("Type"),
1905
1905
)
@@ -2140,7 +2140,7 @@ fwd_sel_accuracies_plot = (
2140
2140
y=alt.Y(
2141
2141
"accuracy",
2142
2142
title="Estimated Accuracy",
2143
- scale=alt.Scale(domain=(0.89, 0.935) ),
2143
+ scale=alt.Scale(zero=False ),
2144
2144
),
2145
2145
)
2146
2146
)
0 commit comments