Skip to content

Commit 26bd213

Browse files
unscaled_wdbc -> wdbc_unscaled for consistency
1 parent aa2201c commit 26bd213

File tree

3 files changed

+4
-4
lines changed

3 files changed

+4
-4
lines changed
File renamed without changes.

source/classification1.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -834,7 +834,7 @@ To keep things simple, we will just use the `Area`, `Smoothness`, and `Class`
834834
variables:
835835

836836
```{r 05-scaling-1, message = FALSE}
837-
unscaled_cancer <- read_csv("data/unscaled_wdbc.csv") |>
837+
unscaled_cancer <- read_csv("data/wdbc_unscaled.csv") |>
838838
mutate(Class = as_factor(Class)) |>
839839
mutate(Class = fct_recode(Class, "Benign" = "B", "Malignant" = "M")) |>
840840
select(Class, Area, Smoothness)
@@ -1377,13 +1377,13 @@ The `tidymodels` package collection also provides the `workflow`, a way to
13771377
chain\index{tidymodels!workflow}\index{workflow|see{tidymodels}} together
13781378
multiple data analysis steps without a lot of otherwise necessary code for
13791379
intermediate steps. To illustrate the whole pipeline, let's start from scratch
1380-
with the `unscaled_wdbc.csv` data. First we will load the data, create a
1380+
with the `wdbc_unscaled.csv` data. First we will load the data, create a
13811381
model, and specify a recipe for how the data should be preprocessed:
13821382

13831383
```{r 05-workflow, message = FALSE, warning = FALSE}
13841384
# load the unscaled cancer data
13851385
# and make sure the response variable, Class, is a factor
1386-
unscaled_cancer <- read_csv("data/unscaled_wdbc.csv") |>
1386+
unscaled_cancer <- read_csv("data/wdbc_unscaled.csv") |>
13871387
mutate(Class = as_factor(Class)) |>
13881388
mutate(Class = fct_recode(Class, "Malignant" = "M", "Benign" = "B"))
13891389

source/classification2.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -329,7 +329,7 @@ library(tidymodels)
329329
set.seed(1)
330330
331331
# load data
332-
cancer <- read_csv("data/unscaled_wdbc.csv") |>
332+
cancer <- read_csv("data/wdbc_unscaled.csv") |>
333333
# convert the character Class variable to the factor datatype
334334
mutate(Class = as_factor(Class)) |>
335335
# rename the factor values to be more readable

0 commit comments

Comments
 (0)