@@ -834,7 +834,7 @@ To keep things simple, we will just use the `Area`, `Smoothness`, and `Class`
834
834
variables:
835
835
836
836
``` {r 05-scaling-1, message = FALSE}
837
- unscaled_cancer <- read_csv("data/unscaled_wdbc .csv") |>
837
+ unscaled_cancer <- read_csv("data/wdbc_unscaled .csv") |>
838
838
mutate(Class = as_factor(Class)) |>
839
839
mutate(Class = fct_recode(Class, "Benign" = "B", "Malignant" = "M")) |>
840
840
select(Class, Area, Smoothness)
@@ -1377,13 +1377,13 @@ The `tidymodels` package collection also provides the `workflow`, a way to
1377
1377
chain\index{tidymodels!workflow}\index{workflow|see{tidymodels}} together
1378
1378
multiple data analysis steps without a lot of otherwise necessary code for
1379
1379
intermediate steps. To illustrate the whole pipeline, let's start from scratch
1380
- with the ` unscaled_wdbc .csv` data. First we will load the data, create a
1380
+ with the ` wdbc_unscaled .csv` data. First we will load the data, create a
1381
1381
model, and specify a recipe for how the data should be preprocessed:
1382
1382
1383
1383
``` {r 05-workflow, message = FALSE, warning = FALSE}
1384
1384
# load the unscaled cancer data
1385
1385
# and make sure the response variable, Class, is a factor
1386
- unscaled_cancer <- read_csv("data/unscaled_wdbc .csv") |>
1386
+ unscaled_cancer <- read_csv("data/wdbc_unscaled .csv") |>
1387
1387
mutate(Class = as_factor(Class)) |>
1388
1388
mutate(Class = fct_recode(Class, "Malignant" = "M", "Benign" = "B"))
1389
1389
0 commit comments