Skip to content

Commit 6a7057a

Browse files
index inference
1 parent e869d58 commit 6a7057a

File tree

1 file changed

+3
-2
lines changed

1 file changed

+3
-2
lines changed

source/inference.Rmd

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -270,7 +270,7 @@ We first group the data by the `replicate` variable—to group the
270270
set of listings in each sample together—and then use `summarize`
271271
to compute the proportion in each sample.
272272
We print both the first and last few entries of the resulting data frame
273-
below to show that we end up with 20,000 point estimates, one for each of the 20,000 samples.
273+
below to show that we end up with 20,000 point estimates, one for each of the 20,000 samples.\index{group\_by}\index{summarize}
274274

275275
```{r 11-example-proportions6, echo = TRUE, message = FALSE, warning = FALSE}
276276
sample_estimates <- samples |>
@@ -381,7 +381,7 @@ one_sample <- airbnb |>
381381

382382
We can create a histogram to visualize the distribution of observations in the
383383
sample (Figure \@ref(fig:11-example-means-sample-hist)), and calculate the mean
384-
of our sample.
384+
of our sample.\index{ggplot!geom\_histogram}
385385

386386
```{r 11-example-means-sample-hist, echo = TRUE, message = FALSE, warning = FALSE, fig.pos = "H", out.extra="", fig.cap = "Distribution of price per night (dollars) for sample of 40 Airbnb listings.", fig.height = 3.5, fig.width = 4.5}
387387
sample_distribution <- ggplot(one_sample, aes(price)) +
@@ -1116,6 +1116,7 @@ To calculate a 95\% percentile bootstrap confidence interval, we will do the fol
11161116

11171117
To do this in R, we can use the `quantile()` function. Quantiles are expressed in proportions rather than
11181118
percentages, so the 2.5th and 97.5th percentiles would be the 0.025 and 0.975 quantiles, respectively.
1119+
\index{percentile}
11191120
\index{quantile}
11201121
\index{pull}
11211122
\index{select}

0 commit comments

Comments
 (0)