@@ -245,7 +245,7 @@ Here, we pass in the number `1`.
245
245
246
246
``` {r}
247
247
set.seed(1)
248
- random_numbers1 <- sample(0:9, 10, replace= TRUE)
248
+ random_numbers1 <- sample(0:9, 10, replace = TRUE)
249
249
random_numbers1
250
250
```
251
251
@@ -255,7 +255,7 @@ we run the `sample` function again, we will
255
255
get a fresh batch of 10 numbers that also look random.
256
256
257
257
``` {r}
258
- random_numbers2 <- sample(0:9, 10, replace= TRUE)
258
+ random_numbers2 <- sample(0:9, 10, replace = TRUE)
259
259
random_numbers2
260
260
```
261
261
@@ -265,10 +265,10 @@ value.
265
265
266
266
``` {r}
267
267
set.seed(1)
268
- random_numbers1_again <- sample(0:9, 10, replace= TRUE)
268
+ random_numbers1_again <- sample(0:9, 10, replace = TRUE)
269
269
random_numbers1_again
270
270
271
- random_numbers2_again <- sample(0:9, 10, replace= TRUE)
271
+ random_numbers2_again <- sample(0:9, 10, replace = TRUE)
272
272
random_numbers2_again
273
273
```
274
274
@@ -278,10 +278,10 @@ obtain a different sequence of random numbers.
278
278
279
279
``` {r}
280
280
set.seed(4235)
281
- random_numbers1_different <- sample(0:9, 10, replace= TRUE)
281
+ random_numbers1_different <- sample(0:9, 10, replace = TRUE)
282
282
random_numbers1_different
283
283
284
- random_numbers2_different <- sample(0:9, 10, replace= TRUE)
284
+ random_numbers2_different <- sample(0:9, 10, replace = TRUE)
285
285
random_numbers2_different
286
286
```
287
287
@@ -512,10 +512,10 @@ cancer_acc_1 <- cancer_test_predictions |>
512
512
filter(.metric == 'accuracy')
513
513
514
514
cancer_prec_1 <- cancer_test_predictions |>
515
- precision(truth = Class, estimate = .pred_class, event_level= "first")
515
+ precision(truth = Class, estimate = .pred_class, event_level = "first")
516
516
517
517
cancer_rec_1 <- cancer_test_predictions |>
518
- recall(truth = Class, estimate = .pred_class, event_level= "first")
518
+ recall(truth = Class, estimate = .pred_class, event_level = "first")
519
519
```
520
520
521
521
In the metrics data frame, we filtered the ` .metric ` column since we are
@@ -537,12 +537,12 @@ If the labels were in the other order, we would instead use `event_level="second
537
537
538
538
``` {r 06-precision}
539
539
cancer_test_predictions |>
540
- precision(truth = Class, estimate = .pred_class, event_level= "first")
540
+ precision(truth = Class, estimate = .pred_class, event_level = "first")
541
541
```
542
542
543
543
``` {r 06-recall}
544
544
cancer_test_predictions |>
545
- recall(truth = Class, estimate = .pred_class, event_level= "first")
545
+ recall(truth = Class, estimate = .pred_class, event_level = "first")
546
546
```
547
547
548
548
The output shows that the estimated precision and recall of the classifier on the test data was
0 commit comments