You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Then, when we create our data analysis workflow, we use the `fit_resamples` function\index{cross-validation!fit\_resamples}\index{tidymodels!fit\_resamples}
667
+
Then, when we create our data analysis workflow, we use the `fit_resamples` function\index{cross-validation!fit\_resamples}\index{tidymodels!fit\_resamples}
667
668
instead of the `fit` function for training. This runs cross-validation on each
668
669
train/validation split.
669
670
@@ -689,7 +690,7 @@ knn_fit <- workflow() |>
689
690
knn_fit
690
691
```
691
692
692
-
The `collect_metrics`\index{tidymodels!collect\_metrics}\index{cross-validation!collect\_metrics} function is used to aggregate the *mean* and *standard error*
693
+
The `collect_metrics`\index{tidymodels!collect\_metrics}\index{cross-validation!collect\_metrics} function is used to aggregate the *mean* and *standard error*
693
694
of the classifier's validation accuracy across the folds. You will find results
694
695
related to the accuracy in the row with `accuracy` listed under the `.metric` column.
695
696
You should consider the mean (`mean`) to be the estimated accuracy, while the standard
0 commit comments