|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "4a432a8bf95d9cdb", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Reading & Working with Geometry Files\n", |
| 9 | + "\n", |
| 10 | + "This notebooks demonstrates how to use the `Grid.from_file()` class method to load in geometry files such as:\n", |
| 11 | + "\n", |
| 12 | + "1. Shapefile\n", |
| 13 | + "2. GeoJSON\n", |
| 14 | + "\n", |
| 15 | + "Highlighted is a workflow showcasing how to remap a variable from an unstructured grid to a Shapefile." |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": null, |
| 21 | + "id": "b35ba4a2c30750e4", |
| 22 | + "metadata": { |
| 23 | + "ExecuteTime": { |
| 24 | + "end_time": "2024-10-09T17:50:50.244285Z", |
| 25 | + "start_time": "2024-10-09T17:50:50.239653Z" |
| 26 | + } |
| 27 | + }, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "import uxarray as ux\n", |
| 31 | + "import warnings\n", |
| 32 | + "import geocat.datafiles as geodf\n", |
| 33 | + "\n", |
| 34 | + "warnings.filterwarnings(\"ignore\")" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "id": "395a3db7-495c-4cff-b733-06bbe522a604", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "## Load a shapefile and plot \n", |
| 43 | + "\n", |
| 44 | + "* This section demonstrates how to load a shapefile using uxarray's Grid.from_file() function\n", |
| 45 | + "* The shapefile used in this example is the US national boundary file from the US Census Bureau. It is a 20m resolution shapefile that represents the national boundary of the United States. \n", |
| 46 | + "* The data plotted is subset to a specific bounding box, which is defined by the latitude and longitude bounds. The result is plotted using the matplotlib backend." |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": null, |
| 52 | + "id": "b4160275c09fe6b0", |
| 53 | + "metadata": { |
| 54 | + "ExecuteTime": { |
| 55 | + "end_time": "2024-10-09T17:50:51.217211Z", |
| 56 | + "start_time": "2024-10-09T17:50:50.540946Z" |
| 57 | + } |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "shp_filename = (\n", |
| 62 | + " \"../../test/meshfiles/shp/cb_2018_us_nation_20m/cb_2018_us_nation_20m.shp\"\n", |
| 63 | + ")\n", |
| 64 | + "uxds = ux.Grid.from_file(shp_filename)\n", |
| 65 | + "lat_bounds = [-90, -70]\n", |
| 66 | + "lon_bounds = [20, 55]\n", |
| 67 | + "uxds = uxds.subset.bounding_box(lon_bounds, lat_bounds)\n", |
| 68 | + "uxds.plot(\n", |
| 69 | + " title=\"US 20m Focus on Mainland (cb_2018_us_nation_20m.shp)\",\n", |
| 70 | + " backend=\"matplotlib\",\n", |
| 71 | + " width=500,\n", |
| 72 | + ")" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "markdown", |
| 77 | + "id": "9808189d", |
| 78 | + "metadata": {}, |
| 79 | + "source": [ |
| 80 | + "## Load a Geojson file and plot\n", |
| 81 | + "\n", |
| 82 | + " * This section demonstrates how to load a Geojson file using uxarray's Grid.from_file() function\n", |
| 83 | + " * The Geojson file used in this example is a few buildings around downtown Chicago. The plot is shown using the \"matplotlib\" backend for bounds specific to the region.\n", |
| 84 | + "\n" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "id": "31d92527", |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "geojson_filename = \"../../test/meshfiles/geojson/sample_chicago_buildings.geojson\"\n", |
| 95 | + "uxgeojson = ux.Grid.from_file(geojson_filename)\n", |
| 96 | + "lat_bounds = [41.6, 42.1]\n", |
| 97 | + "lon_bounds = [-87.7, -87.5]\n", |
| 98 | + "uxgeojson.subset.bounding_box(lon_bounds, lat_bounds).plot(backend=\"matplotlib\")" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "id": "f2f14b3a", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "## Open NetCDF mesh file using the Grid.from_file() function\n", |
| 107 | + "\n", |
| 108 | + "* Regular NetCDF files can also be opened using this function. Backend options available are:\n", |
| 109 | + " * xarray\n", |
| 110 | + " * geopandas (default for opening shapefile, geojson file and other file formats supported by geopandas read_file function)\n", |
| 111 | + "* In the following code, we load a NetCDF mesh file: scrip/outCSne8/outCSne8.nc and print out the grid contents." |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": null, |
| 117 | + "id": "aba5d650", |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [], |
| 120 | + "source": [ |
| 121 | + "nc_filename = \"../../test/meshfiles/scrip/outCSne8/outCSne8.nc\"\n", |
| 122 | + "uxgrid = ux.Grid.from_file(nc_filename, backend=\"xarray\")\n", |
| 123 | + "uxgrid" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "id": "f27481e2-5c1c-4189-b0c7-39737c4e47f8", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "## Remapping from Shapefile\n", |
| 132 | + "\n", |
| 133 | + "The following steps are needed for Remapping Global Relative Humidity Data on to a specific region defined by Shapefile using UXarray\n", |
| 134 | + "\n", |
| 135 | + "1. **Read the shapefile** (uxds)\n" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": null, |
| 141 | + "id": "002b3f66-11ed-4f3d-905f-967802b9fff2", |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "shp_filename = (\n", |
| 146 | + " \"../../test/meshfiles/shp/chicago_neighborhoods/chicago_neighborhoods.shp\"\n", |
| 147 | + ")\n", |
| 148 | + "uxds = ux.Grid.from_file(shp_filename)\n", |
| 149 | + "lat_bounds = [41, 43]\n", |
| 150 | + "lon_bounds = [-89, -90]\n", |
| 151 | + "uxds = uxds.subset.bounding_box(lon_bounds, lat_bounds)\n", |
| 152 | + "uxds.plot(\n", |
| 153 | + " title=\"Chicago Neighborhoods\",\n", |
| 154 | + " backend=\"bokeh\",\n", |
| 155 | + ")" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "markdown", |
| 160 | + "id": "c9447221-aaba-4155-868d-f88b791e559e", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "\n", |
| 164 | + "2. **Initialize Input Data Files**\n", |
| 165 | + " - The input datasets consist of NetCDF files that include global relative humidity data.\n", |
| 166 | + " - The `datafiles` variable points to two NetCDF files using the `geodf.get` function, specifying the paths:\n", |
| 167 | + " - The first file contains meteorological diagnostic data: \n", |
| 168 | + " `netcdf_files/MPAS/FalkoJudt/dyamond_1/30km/diag.2016-08-20_00.00.00_subset.nc`.\n", |
| 169 | + " - The second file provides the MPAS grid specification: \n", |
| 170 | + " `netcdf_files/MPAS/FalkoJudt/dyamond_1/30km/x1.655362.grid_subset.nc`.\n", |
| 171 | + "\n", |
| 172 | + "2. **Open the Datasets with UXarray**\n", |
| 173 | + " - The `ux.open_dataset()` function is used to load these files, making them accessible as a UXarray Dataset.\n", |
| 174 | + " - `uxds_source` is the opened dataset that holds the meteorological data, such as relative humidity, structured over the MPAS grid." |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "id": "9b629686-8286-4336-b188-8a1b12c0fcd2", |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "datafiles = (\n", |
| 185 | + " geodf.get(\n", |
| 186 | + " \"netcdf_files/MPAS/FalkoJudt/dyamond_1/30km/diag.2016-08-20_00.00.00_subset.nc\"\n", |
| 187 | + " ),\n", |
| 188 | + " geodf.get(\"netcdf_files/MPAS/FalkoJudt/dyamond_1/30km/x1.655362.grid_subset.nc\"),\n", |
| 189 | + ")\n", |
| 190 | + "\n", |
| 191 | + "uxds_source = ux.open_dataset(datafiles[1], datafiles[0])" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "markdown", |
| 196 | + "id": "ab2f5f8c", |
| 197 | + "metadata": {}, |
| 198 | + "source": [ |
| 199 | + "4. **Remap Relative Humidity Data**\n", |
| 200 | + " - The `relhum_200hPa` variable is accessed from `uxds_source` to extract relative humidity data at 200 hPa pressure level.\n", |
| 201 | + " - **Inverse Distance Weighted Remapping**:\n", |
| 202 | + " - The data is remapped using UXarray’s `inverse_distance_weighted` method.\n", |
| 203 | + " - The remapping is done to \"face centers,\" adapting the data from its original grid to align with a new shape or structure.\n", |
| 204 | + "\n", |
| 205 | + "5. **Plot the Remapped Data**\n", |
| 206 | + " - The remapped data for Chicago neighborhoods is plotted using UXarray's plotting utilities.\n", |
| 207 | + " - The plot uses the `sequential_blue` colormap and is rendered with the `bokeh` backend.\n", |
| 208 | + " - The title of the plot is \"Chicago Neighborhoods Relative Humidity,\" giving a clear representation of how relative humidity varies spatially." |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "id": "af78a1ed-e9e4-4dd0-a58f-87640e7d5f11", |
| 215 | + "metadata": {}, |
| 216 | + "outputs": [], |
| 217 | + "source": [ |
| 218 | + "chicago_relative_humidty = uxds_source[\"relhum_200hPa\"].remap.inverse_distance_weighted(\n", |
| 219 | + " uxds, remap_to=\"face centers\"\n", |
| 220 | + ")\n", |
| 221 | + "\n", |
| 222 | + "chicago_relative_humidty[0].plot(\n", |
| 223 | + " cmap=ux.cmaps.sequential_blue,\n", |
| 224 | + " title=\"Chicago Neighborhoods Relative Humidty\",\n", |
| 225 | + " backend=\"bokeh\",\n", |
| 226 | + ")" |
| 227 | + ] |
| 228 | + } |
| 229 | + ], |
| 230 | + "metadata": { |
| 231 | + "kernelspec": { |
| 232 | + "display_name": "Python 3 (ipykernel)", |
| 233 | + "language": "python", |
| 234 | + "name": "python3" |
| 235 | + }, |
| 236 | + "language_info": { |
| 237 | + "codemirror_mode": { |
| 238 | + "name": "ipython", |
| 239 | + "version": 3 |
| 240 | + }, |
| 241 | + "file_extension": ".py", |
| 242 | + "mimetype": "text/x-python", |
| 243 | + "name": "python", |
| 244 | + "nbconvert_exporter": "python", |
| 245 | + "pygments_lexer": "ipython3", |
| 246 | + "version": "3.11.9" |
| 247 | + } |
| 248 | + }, |
| 249 | + "nbformat": 4, |
| 250 | + "nbformat_minor": 5 |
| 251 | +} |
0 commit comments