Skip to content

Commit 20727d1

Browse files
committed
main readme translated
1 parent 9f414d6 commit 20727d1

File tree

1 file changed

+110
-0
lines changed

1 file changed

+110
-0
lines changed

translations/README.ru.md

Lines changed: 110 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,110 @@
1+
# Наука о данных для начинающих - Учебный план
2+
3+
[![GitHub license](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
4+
[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
5+
[![GitHub issues](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
6+
[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
7+
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
8+
9+
[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
10+
[![GitHub forks](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
11+
[![GitHub stars](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
12+
13+
Команда Azure Cloud Advocates от компании Microsoft рада представить вам десятинедельный учебный курс по науке о данным, разбитый на 20 уроков. Каждый урок содержит вступительный и проверочный тесты, инструкции для прохождения, решение и домашнее задание. Мы выбрали методику проектно-ориентированного обучения как проверенный способ освоения новых навыков. Она помогает Вам учиться в процессе работы над проектом.
14+
15+
**Выражаем благодарность нашим авторам:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
16+
17+
**🙏 Отдельная благодарность 🙏 нашей команде авторов Microsoft Student Ambassador и редакторам,** в особенности [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Rohit Yadav](https://www.linkedin.com/in/rty2423), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Sheena Narula](https://www.linkedin.com/in/sheena-narula-n/), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), Yogendrasingh Pawar, Max Blum, Samridhi Sharma, Tauqeer Ahmad, Aaryan Arora, ChhailBihari Dubey
18+
19+
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Title.png)|
20+
|:---:|
21+
| Data Science For Beginners - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
22+
23+
24+
# Начало работы
25+
26+
> **Дорогие учителя**, мы [добавили наши рекомендации](for-teachers.md) по работе с курсом. Мы будем рады получить ваши отзывы [на нашем форуме](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
27+
28+
> **Дорогие студенты**, для самостоятельного прохождения курса сделайте форк всего репозитория, выполните задания самостоятельно, начиная со вступительных тестов, а после прочтения лекции, выполните оставшуюся часть урока. Постарайтесь достигнуть понимания при выполнении заданий и избегайте копирования решения, несмотря на то, что решение доступно в папке `/solutions` для каждого мини-проекта. Отличной идеей также является организовать учебную группу со своими друзьями и пройти этот курс вместе. Для дальнейшего обучения мы рекомендуем портал [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-40229-cxa).
29+
30+
31+
<!--[![Promo video](screenshot.png)]( "Promo video")
32+
33+
> 🎥 Click the image above for a video about the project the folks who created it!-->
34+
35+
## О методике обучения
36+
37+
Мы выбрали два ключевых пункта при разработке данного учебного курса: проектоориентированность и частая проверка знаний. К концу занятий учащиеся изучат основные принципы науки о данных, среди которых этические аспекты работы с данными, подготовку данных, различные способы обработки данных, визуализация данных, анализ данных, примеры практического использования науки о данных и многое другое.
38+
39+
В дополнение к этому, незначительные тесты перед началом урока поможет мотивировать учеников к изучению темы, а заключительный тест проверит усвоение материала. Мы постарались сделать данный курс гибким и нескучным, поэтому вы можете пройти его полностью или только некоторые разделы. По мере прохождения десятинедельного курса, проекты будут становиться всё сложнее.
40+
41+
> Ознакомьтесь с нашими [правилами поведения](CODE_OF_CONDUCT.md), [сотрудничества](CONTRIBUTING.md), [перевода](TRANSLATIONS.md). Мы приветствуем конструктивную критику.
42+
43+
## Каждый урок включает в себя:
44+
45+
- Небольшой скетч (необязательно)
46+
- Вспомогательное видео (необязательно)
47+
- Вступительный тест
48+
- Учебный материал
49+
- Пошаговую инструкцию для выполнения проекта (для проектно-ориентированных уроков)
50+
- Проверку знаний
51+
- Задачу для выполнения
52+
- Дополнительные материалы
53+
- Домашнее задание
54+
- Проверочный тест
55+
56+
> **О тестах**: Все тесты Вы можете найти [в этом приложении](https://red-water-0103e7a0f.azurestaticapps.net/), их всего 40 по три вопроса в каждом. Ссылки на них находятся внутри уроков, однако приложение не может быть запущено локально. Следуйте инструкциям в папке `quiz-app`. Постепенно тесты будут локализованы.
57+
58+
## Содержание уроков
59+
60+
61+
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](./sketchnotes/00-Roadmap.png)|
62+
|:---:|
63+
| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
64+
65+
66+
| Номер урока | Тема | Раздел | Цели | Ссылка | Автор |
67+
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
68+
| 01 | Что такое наука о данных | [Введение](1-Introduction/README.md) | Изучить основные понятия науки о данных и её связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
69+
| 02 | Этика и наука о данных | [Введение](1-Introduction/README.md) | Этические аспекты в области науки о данных. | [урок](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
70+
| 03 | Что такое данные | [Введение](1-Introduction/README.md) | Классификация данных и их источники. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
71+
| 04 | Введение в статистику и теорию вероятности | [Введение](1-Introduction/README.md) | Вероятностные и статистические приёмы для изучения данных.| [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
72+
| 05 | Работа с реляционными данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в реляционные данные, основы изучения и анализа реляционных данных при помощи структурированного языка запросов, также известного как SQL (произносится “си-квел”). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
73+
| 06 | Работа с NoSQL данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в нереляционные данные, их разнообразие и основы работы с документоориентированными базами данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
74+
| 07 | Работа с языком программирования Python | [Работа с данными](2-Working-With-Data/README.md) | Основы использования языка Python при исследовании данных на примере библиотеки Pandas. Рекомендуется предварительно познакомиться с Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
75+
| 08 | Подготовка данных | [Работа с данными](2-Working-With-Data/README.md) | Методы очистки и трансформации данных для работы с пропусками, ошибками и неполными данными. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
76+
| 09 | Визуализация количественных данных | [Визуализация данных](3-Data-Visualization/README.md) | Использование библиотеки Matplotlib для визуализации данных о разнообразии птиц 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
77+
| 10 | Визуализация распределения данных | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация наблюдений и трендов на временнóм интервале | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
78+
| 11 | Визуализация пропорций | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация дискретных и сгруппированных процентных соотношений. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
79+
| 12 | Визуализация связей | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация связей и корреляций между наборами данных и их переменными. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
80+
| 13 | Выразительная визуализация | [Визуализация данных](3-Data-Visualization/README.md) | Методы и инструкция для построения визуализации для эффективного решения проблем и получения инсайтов. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
81+
| 14 | Введение в жизненный цикл проекта в области науки о данных | [Жизненный цикл проекта](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл проекта в области науки о данных и его первый этап получения и извлечения данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
82+
| 15 | Анализ данных | [Жизненный цикл проекта](4-Data-Science-Lifecycle/README.md) | Данный этап жизненного цикла сосредоточен на методах анализа данных. | [урок](4-Data-Science-Lifecycle/15-Analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
83+
| 16 | Взаимодействие | [Жизненный цикл проекта](4-Data-Science-Lifecycle/README.md) | Данный этап жизненного цикла сфокусирован на презентацию инсайтов в данных в виде, легком для понимания лицам, принимающим решения. | [урок](4-Data-Science-Lifecycle/16-Communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
84+
| 17 | Наука о данных в облачной инфраструктуре | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Данная серия уроков знакомит с применением облачных технологии в науке о данных и его преимуществах. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
85+
| 18 | Наука о данных в облачной инфраструктуре | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с минимальным использованием программирования. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
86+
| 19 | Наука о данных в облачной инфраструктуре | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развёртывание моделей с использованием Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
87+
| 20 | Наука о данных на практике | [На практике](6-Data-Science-In-Wild/README.md) | Проекты в области науки о данных на практике. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
88+
89+
## Оффлайн доступ
90+
91+
Вы можете запустить данную документацию используя [Docsify](https://docsify.js.org/#/). Сделайте форк данного репозитория, [установите Docsify](https://docsify.js.org/#/quickstart) на Вашем компьютере, и затем введите команду `docsify serve` в корневом разделе репозитория. Веб-сайт будет доступен на порте 3000 Вашей локальной машины: `localhost:3000`.
92+
93+
94+
> Отмечаем, что Docsify не поддерживает Jupyter-ноутбуки. Для работы с ними используйте VS Code с запуском ядра Python.
95+
96+
## PDF файлы
97+
98+
PDF файлы всех уроков Вы можете найти [здесь](https://microsoft.github.io/Data-Science-For-Beginners/pdf/readme.pdf).
99+
100+
## Ищем помощников!
101+
102+
Если вы хотите поучаствовать в перевода курса, прочтите нашу [инструкцию по переводу](TRANSLATIONS.md).
103+
104+
## Другие учебные курсы
105+
106+
Наша команда разрабатывает и другие курсы. Познакомьтесь с ними:
107+
108+
- [Машинное обучение для начинающих](https://aka.ms/ml-beginners)
109+
- [Интернет вещей для начинающих](https://aka.ms/iot-beginners)
110+
- [Веб-разработка для начинающих](https://aka.ms/webdev-beginners)

0 commit comments

Comments
 (0)