You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: 3-Data-Visualization/09-visualization-quantities/translations/README.pt-br.md
+9-9Lines changed: 9 additions & 9 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,6 @@
1
1
# Visualizando Quantidades
2
2
3
-
|](../../sketchnotes/09-Visualizing-Quantities.png)|
3
+
|](../../../sketchnotes/09-Visualizing-Quantities.png)|
4
4
|:---:|
5
5
| Visualizando quantidades - _Sketchnote por [@nitya](https://twitter.com/nitya)_|
6
6
@@ -53,7 +53,7 @@ Vamos começar plotando alguns dados numéricos com um simples gráfico de linha
53
53
wingspan = birds['MaxWingspan']
54
54
wingspan.plot()
55
55
```
56
-

56
+

57
57
58
58
O que é possível perceber imediatamente? Aparentemente existe pelo menos um outlier - e que envergadura! Uma envergadura de 2300 centímetros equivale a 23 metros - têm pterodáctilos voando em Minnesota? Vamos investigar.
59
59
@@ -73,7 +73,7 @@ plt.plot(x, y)
73
73
74
74
plt.show()
75
75
```
76
-

76
+

77
77
78
78
Mesmo com a rotação das labels em 45 graus, existem muitos para ler. Vamos tentar outra estratégia: identificar somente os outliers e colocar as labels dentro do gráfico. Você pode usarj um gráfico de dispersão para abrir mais espaço para identificação:
79
79
@@ -96,7 +96,7 @@ O que aconteceu aqui? Você usou `tick_params` para esconder as labels debaixo e
96
96
97
97
O que você descobriu?
98
98
99
-

99
+

100
100
101
101
## Filtrar seus dados
102
102
@@ -117,7 +117,7 @@ plt.show()
117
117
118
118
By filtering out outliers, your data is now more cohesive and understandable.
119
119
120
-

120
+

121
121
122
122
Now that we have a cleaner dataset at least in terms of wingspan, let's discover more about these birds.
123
123
@@ -143,7 +143,7 @@ birds.plot(x='Category',
143
143
title='Birds of Minnesota')
144
144
145
145
```
146
-

146
+

147
147
148
148
This bar chart, however, is unreadable because there is too much non-grouped data. You need to select only the data that you want to plot, so let's look at the length of birds based on their category.

161
+

162
162
163
163
This bar chart shows a good view of the number of birds in each category. In a blink of an eye, you see that the largest number of birds in this region are in the Ducks/Geese/Waterfowl category. Minnesota is the 'land of 10,000 lakes' so this isn't surprising!
Nothing is surprising here: hummingbirds have the least MaxLength compared to Pelicans or Geese. It's good when data makes logical sense!
180
180
@@ -192,7 +192,7 @@ plt.show()
192
192
```
193
193
In this plot, you can see the range per bird category of the Minimum Length and Maximum length. You can safely say that, given this data, the bigger the bird, the larger its length range. Fascinating!
0 commit comments