Skip to content

Commit 3b8aefd

Browse files
update images path
1 parent 4ff6ee6 commit 3b8aefd

File tree

1 file changed

+9
-9
lines changed
  • 3-Data-Visualization/09-visualization-quantities/translations

1 file changed

+9
-9
lines changed

3-Data-Visualization/09-visualization-quantities/translations/README.pt-br.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Visualizando Quantidades
22

3-
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/09-Visualizing-Quantities.png)|
3+
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/09-Visualizing-Quantities.png)|
44
|:---:|
55
| Visualizando quantidades - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
66

@@ -53,7 +53,7 @@ Vamos começar plotando alguns dados numéricos com um simples gráfico de linha
5353
wingspan = birds['MaxWingspan']
5454
wingspan.plot()
5555
```
56-
![Envergadura máxima](images/max-wingspan.png)
56+
![Envergadura máxima](../images/max-wingspan.png)
5757

5858
O que é possível perceber imediatamente? Aparentemente existe pelo menos um outlier - e que envergadura! Uma envergadura de 2300 centímetros equivale a 23 metros - têm pterodáctilos voando em Minnesota? Vamos investigar.
5959

@@ -73,7 +73,7 @@ plt.plot(x, y)
7373
7474
plt.show()
7575
```
76-
![Envergadura com labels (identificadores)](images/max-wingspan-labels.png)
76+
![Envergadura com labels (identificadores)](../images/max-wingspan-labels.png)
7777

7878
Mesmo com a rotação das labels em 45 graus, existem muitos para ler. Vamos tentar outra estratégia: identificar somente os outliers e colocar as labels dentro do gráfico. Você pode usarj um gráfico de dispersão para abrir mais espaço para identificação:
7979

@@ -96,7 +96,7 @@ O que aconteceu aqui? Você usou `tick_params` para esconder as labels debaixo e
9696

9797
O que você descobriu?
9898

99-
![outliers](images/labeled-wingspan.png)
99+
![outliers](../images/labeled-wingspan.png)
100100

101101
## Filtrar seus dados
102102

@@ -117,7 +117,7 @@ plt.show()
117117

118118
By filtering out outliers, your data is now more cohesive and understandable.
119119

120-
![scatterplot of wingspans](images/scatterplot-wingspan.png)
120+
![scatterplot of wingspans](../images/scatterplot-wingspan.png)
121121

122122
Now that we have a cleaner dataset at least in terms of wingspan, let's discover more about these birds.
123123

@@ -143,7 +143,7 @@ birds.plot(x='Category',
143143
title='Birds of Minnesota')
144144

145145
```
146-
![full data as a bar chart](images/full-data-bar.png)
146+
![full data as a bar chart](../images/full-data-bar.png)
147147

148148
This bar chart, however, is unreadable because there is too much non-grouped data. You need to select only the data that you want to plot, so let's look at the length of birds based on their category.
149149

@@ -158,7 +158,7 @@ category_count = birds.value_counts(birds['Category'].values, sort=True)
158158
plt.rcParams['figure.figsize'] = [6, 12]
159159
category_count.plot.barh()
160160
```
161-
![category and length](images/category-counts.png)
161+
![category and length](../images/category-counts.png)
162162

163163
This bar chart shows a good view of the number of birds in each category. In a blink of an eye, you see that the largest number of birds in this region are in the Ducks/Geese/Waterfowl category. Minnesota is the 'land of 10,000 lakes' so this isn't surprising!
164164

@@ -174,7 +174,7 @@ plt.barh(y=birds['Category'], width=maxlength)
174174
plt.rcParams['figure.figsize'] = [6, 12]
175175
plt.show()
176176
```
177-
![comparing data](images/category-length.png)
177+
![comparing data](../images/category-length.png)
178178

179179
Nothing is surprising here: hummingbirds have the least MaxLength compared to Pelicans or Geese. It's good when data makes logical sense!
180180

@@ -192,7 +192,7 @@ plt.show()
192192
```
193193
In this plot, you can see the range per bird category of the Minimum Length and Maximum length. You can safely say that, given this data, the bigger the bird, the larger its length range. Fascinating!
194194

195-
![superimposed values](images/superimposed.png)
195+
![superimposed values](../images/superimposed.png)
196196

197197
## 🚀 Challenge
198198

0 commit comments

Comments
 (0)