Skip to content

Commit 86772ac

Browse files
authored
Merge pull request microsoft#642 from microsoft/update-translations
🌐 Update translations via Co-op Translator
2 parents 4b9b55c + 0557d81 commit 86772ac

File tree

576 files changed

+466914
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

576 files changed

+466914
-0
lines changed

translations/hk/1-Introduction/01-defining-data-science/notebook.ipynb

Lines changed: 431 additions & 0 deletions
Large diffs are not rendered by default.

translations/hk/1-Introduction/01-defining-data-science/solution/notebook.ipynb

Lines changed: 539 additions & 0 deletions
Large diffs are not rendered by default.
Lines changed: 264 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,264 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"source": [
6+
"## 概率與統計學簡介\n",
7+
"## 作業\n",
8+
"\n",
9+
"在這次作業中,我們將使用[這裡](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)提供的糖尿病患者數據集。\n"
10+
],
11+
"metadata": {}
12+
},
13+
{
14+
"cell_type": "code",
15+
"execution_count": 13,
16+
"source": [
17+
"import pandas as pd\r\n",
18+
"import numpy as np\r\n",
19+
"\r\n",
20+
"df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\r\n",
21+
"df.head()"
22+
],
23+
"outputs": [
24+
{
25+
"output_type": "execute_result",
26+
"data": {
27+
"text/plain": [
28+
" AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
29+
"0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
30+
"1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
31+
"2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
32+
"3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
33+
"4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
34+
],
35+
"text/html": [
36+
"<div>\n",
37+
"<style scoped>\n",
38+
" .dataframe tbody tr th:only-of-type {\n",
39+
" vertical-align: middle;\n",
40+
" }\n",
41+
"\n",
42+
" .dataframe tbody tr th {\n",
43+
" vertical-align: top;\n",
44+
" }\n",
45+
"\n",
46+
" .dataframe thead th {\n",
47+
" text-align: right;\n",
48+
" }\n",
49+
"</style>\n",
50+
"<table border=\"1\" class=\"dataframe\">\n",
51+
" <thead>\n",
52+
" <tr style=\"text-align: right;\">\n",
53+
" <th></th>\n",
54+
" <th>AGE</th>\n",
55+
" <th>SEX</th>\n",
56+
" <th>BMI</th>\n",
57+
" <th>BP</th>\n",
58+
" <th>S1</th>\n",
59+
" <th>S2</th>\n",
60+
" <th>S3</th>\n",
61+
" <th>S4</th>\n",
62+
" <th>S5</th>\n",
63+
" <th>S6</th>\n",
64+
" <th>Y</th>\n",
65+
" </tr>\n",
66+
" </thead>\n",
67+
" <tbody>\n",
68+
" <tr>\n",
69+
" <th>0</th>\n",
70+
" <td>59</td>\n",
71+
" <td>2</td>\n",
72+
" <td>32.1</td>\n",
73+
" <td>101.0</td>\n",
74+
" <td>157</td>\n",
75+
" <td>93.2</td>\n",
76+
" <td>38.0</td>\n",
77+
" <td>4.0</td>\n",
78+
" <td>4.8598</td>\n",
79+
" <td>87</td>\n",
80+
" <td>151</td>\n",
81+
" </tr>\n",
82+
" <tr>\n",
83+
" <th>1</th>\n",
84+
" <td>48</td>\n",
85+
" <td>1</td>\n",
86+
" <td>21.6</td>\n",
87+
" <td>87.0</td>\n",
88+
" <td>183</td>\n",
89+
" <td>103.2</td>\n",
90+
" <td>70.0</td>\n",
91+
" <td>3.0</td>\n",
92+
" <td>3.8918</td>\n",
93+
" <td>69</td>\n",
94+
" <td>75</td>\n",
95+
" </tr>\n",
96+
" <tr>\n",
97+
" <th>2</th>\n",
98+
" <td>72</td>\n",
99+
" <td>2</td>\n",
100+
" <td>30.5</td>\n",
101+
" <td>93.0</td>\n",
102+
" <td>156</td>\n",
103+
" <td>93.6</td>\n",
104+
" <td>41.0</td>\n",
105+
" <td>4.0</td>\n",
106+
" <td>4.6728</td>\n",
107+
" <td>85</td>\n",
108+
" <td>141</td>\n",
109+
" </tr>\n",
110+
" <tr>\n",
111+
" <th>3</th>\n",
112+
" <td>24</td>\n",
113+
" <td>1</td>\n",
114+
" <td>25.3</td>\n",
115+
" <td>84.0</td>\n",
116+
" <td>198</td>\n",
117+
" <td>131.4</td>\n",
118+
" <td>40.0</td>\n",
119+
" <td>5.0</td>\n",
120+
" <td>4.8903</td>\n",
121+
" <td>89</td>\n",
122+
" <td>206</td>\n",
123+
" </tr>\n",
124+
" <tr>\n",
125+
" <th>4</th>\n",
126+
" <td>50</td>\n",
127+
" <td>1</td>\n",
128+
" <td>23.0</td>\n",
129+
" <td>101.0</td>\n",
130+
" <td>192</td>\n",
131+
" <td>125.4</td>\n",
132+
" <td>52.0</td>\n",
133+
" <td>4.0</td>\n",
134+
" <td>4.2905</td>\n",
135+
" <td>80</td>\n",
136+
" <td>135</td>\n",
137+
" </tr>\n",
138+
" </tbody>\n",
139+
"</table>\n",
140+
"</div>"
141+
]
142+
},
143+
"metadata": {},
144+
"execution_count": 13
145+
}
146+
],
147+
"metadata": {}
148+
},
149+
{
150+
"cell_type": "markdown",
151+
"source": [
152+
"在此數據集中,列的含義如下:\n",
153+
"* 年齡和性別不言自明\n",
154+
"* BMI 是身體質量指數\n",
155+
"* BP 是平均血壓\n",
156+
"* S1 到 S6 是不同的血液測量值\n",
157+
"* Y 是疾病在一年內進展的定性指標\n",
158+
"\n",
159+
"讓我們使用概率和統計的方法來研究這個數據集。\n",
160+
"\n",
161+
"### 任務 1:計算所有值的平均值和方差\n"
162+
],
163+
"metadata": {}
164+
},
165+
{
166+
"cell_type": "code",
167+
"execution_count": null,
168+
"source": [],
169+
"outputs": [],
170+
"metadata": {}
171+
},
172+
{
173+
"cell_type": "markdown",
174+
"source": [
175+
"### 任務 2:根據性別繪製 BMI、BP 和 Y 的箱型圖\n"
176+
],
177+
"metadata": {}
178+
},
179+
{
180+
"cell_type": "code",
181+
"execution_count": null,
182+
"source": [],
183+
"outputs": [],
184+
"metadata": {}
185+
},
186+
{
187+
"cell_type": "markdown",
188+
"source": [
189+
"### 任務 3: 年齡、性別、BMI 和 Y 變量的分佈是什麼?\n"
190+
],
191+
"metadata": {}
192+
},
193+
{
194+
"cell_type": "code",
195+
"execution_count": null,
196+
"source": [],
197+
"outputs": [],
198+
"metadata": {}
199+
},
200+
{
201+
"cell_type": "markdown",
202+
"source": [
203+
"### 任務 4:測試不同變數與疾病進展(Y)之間的相關性\n",
204+
"\n",
205+
"> **提示** 相關性矩陣可以為你提供最有用的資訊,幫助判斷哪些數值是相關的。\n"
206+
],
207+
"metadata": {}
208+
},
209+
{
210+
"cell_type": "markdown",
211+
"source": [],
212+
"metadata": {}
213+
},
214+
{
215+
"cell_type": "markdown",
216+
"source": [
217+
"### 任務 5:檢驗糖尿病進展程度在男性和女性之間是否存在差異的假設\n"
218+
],
219+
"metadata": {}
220+
},
221+
{
222+
"cell_type": "markdown",
223+
"source": [],
224+
"metadata": {}
225+
},
226+
{
227+
"cell_type": "markdown",
228+
"metadata": {},
229+
"source": [
230+
"\n---\n\n**免責聲明**: \n本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業的人類翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。\n"
231+
]
232+
}
233+
],
234+
"metadata": {
235+
"orig_nbformat": 4,
236+
"language_info": {
237+
"name": "python",
238+
"version": "3.8.8",
239+
"mimetype": "text/x-python",
240+
"codemirror_mode": {
241+
"name": "ipython",
242+
"version": 3
243+
},
244+
"pygments_lexer": "ipython3",
245+
"nbconvert_exporter": "python",
246+
"file_extension": ".py"
247+
},
248+
"kernelspec": {
249+
"name": "python3",
250+
"display_name": "Python 3.8.8 64-bit (conda)"
251+
},
252+
"interpreter": {
253+
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
254+
},
255+
"coopTranslator": {
256+
"original_hash": "defe9f96b3d327a6f37d795c43ad0219",
257+
"translation_date": "2025-09-02T09:49:25+00:00",
258+
"source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb",
259+
"language_code": "hk"
260+
}
261+
},
262+
"nbformat": 4,
263+
"nbformat_minor": 2
264+
}

0 commit comments

Comments
 (0)